# A Novel Vector Control Strategy for a Six-Phase Induction Motor with Low Torque Ripples and Harmonic Currents

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. 6PIM Modelling

#### 2.1. 6PIM Model in $\alpha -\beta $ Subspace

#### 2.2. 6PIM Model in ${z}_{1}-{z}_{2}$ Subspace

## 3. Conventional DTC of 6PIM

## 4. Harmonic Currents Reduction by Duty Cycle Control Strategy

## 5. Proposed Control Algorithm for the 6PIM Drive

## 6. Simulation Results

## 7. Experimental Setup

## 8. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## References

- Levi, E. Multiphase electric machines for variable-speed applications. IEEE Trans. Ind. Electron.
**2008**, 55, 1893–1909. [Google Scholar] [CrossRef] - Holakooie, M.H.; Ojaghi, M.; Taheri, A. Direct Torque Control of Six-Phase Induction Motor with a Novel MRAS-Based Stator Resistance Estimator. IEEE Trans. Ind. Electron.
**2018**, 65, 7685–7696. [Google Scholar] [CrossRef] - Che, H.S.; Duran, M.J.; Levi, E.; Jones, M.; Hew, W.P.; Rahim, N.A. Postfault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points. IEEE Trans. Power Electron.
**2014**, 29, 5406–5416. [Google Scholar] [CrossRef] - Jahns, T.M. Improved reliability in solid-state drives for large asynchronous ac machines by means of multiple independent phase-drive units. IEEE Trans. Ind. Appl.
**1980**, IA-16, 321–331. [Google Scholar] [CrossRef] - Fnaiech, M.A.; Betin, F.; Capolino, G.A.; Fnaiech, F. Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases. IEEE Trans. Ind. Electron.
**2010**, 57, 354–364. [Google Scholar] [CrossRef] - Parsa, L.; Toliyat, H.A.; Goodarzi, A. Five-phase interior permanent-magnet motors with low torque pulsation. IEEE Trans. Ind. Appl.
**2007**, 43, 40–46. [Google Scholar] [CrossRef] - Marouani, K.; Baghli, L.; Hadiouche, D.; Kheloui, A.; Rezzoug, A. A new PWM strategy based on a 24-sector vector space decomposition for a six-phase VSI-Fed dual stator induction motor. IEEE Trans. Ind. Electron.
**2008**, 55, 1910–1920. [Google Scholar] [CrossRef] - Pandit, J.K.; Aware, M.V.; Nemade, R.V.; Levi, E. Direct Torque Control Scheme for a Six-Phase Induction Motor with Reduced Torque Ripple. IEEE Trans. Power Electron.
**2017**, 32, 7118–7129. [Google Scholar] [CrossRef] - Zheng, L.; Fletcher, J.E.; Williams, B.W.; He, X. A novel direct torque control scheme for a sensorless five-phase induction motor drive. IEEE Trans. Ind. Electron.
**2011**, 58, 503–513. [Google Scholar] [CrossRef] - Lokriti, A.; Salhi, I.; Doubabi, S. IM Direct Torque Control with no flux distortion and no static torque error. ISA Trans.
**2015**, 59, 256–267. [Google Scholar] [CrossRef] - Ambrozic, A.; Buja, G.S.; Menis, R. Band-Constrained Technique for Direct Torque Control of Induction Motor. IEEE Trans. Ind. Electron.
**2004**, 51, 776–784. [Google Scholar] [CrossRef] - Ren, Y.; Zhu, Z.Q. Enhancement of steady-state performance in direct-torque-controlled dual three-phase permanent-magnet synchronous machine drives with modified switching table. IEEE Trans. Ind. Electron.
**2015**, 62, 3338–3350. [Google Scholar] [CrossRef] - Taheri, A.; Rahmati, A.; Kaboli, S. Comparison of efficiency for different switching tables in six-phase induction motor DTC drive. J. Power Electron.
**2012**, 12, 128–135. [Google Scholar] [CrossRef] - Singh, B.; Jain, S.; Dwivedi, S. Torque ripple reduction technique with improved flux response for a direct torque control induction motor drive. IET Power Electron.
**2013**, 6, 326–342. [Google Scholar] [CrossRef] - Lai, Y.S.; Chen, J.H. A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans. Energy Convers.
**2001**, 16, 220–227. [Google Scholar] - Shyu, K.K.; Lin, J.K.; Pham, V.T.; Yang, M.J.; Wang, T.W. Global minimum torque ripple design for direct torque control of induction motor drives. IEEE Trans. Ind. Electron.
**2010**, 57, 3148–3156. [Google Scholar] [CrossRef] - Abad, G.; Rodriguez, M.A.; Poza, J. Two-Level VSC Based Predictive Direct Torque Control of the Doubly Fed Induction Machine with Reduced Torque and Flux Ripples at Low Constant Switching Frequency. IEEE Trans. Power Electron.
**2008**, 23, 1050–1061. [Google Scholar] [CrossRef] - Wang, T.; Fang, F.; Wu, X.; Jiang, X. Novel filter for stator harmonic currents reduction in six-step converter fed multiphase induction motor drives. IEEE Trans. Power Electron.
**2013**, 28, 498–506. [Google Scholar] [CrossRef] - Autsou, S.; Saroka, V.; Karpovich, D.; Rassolkin, A.; Gevorkov, L.; Vaimann, T.; Kallaste, A.; Belahcen, A. Comparative study of field-oriented control model in application for induction and synchronous reluctance motors for life-cycle analysis. In Proceedings of the 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Moscow, Russia, 31 January–2 February 2018. [Google Scholar]
- Nelson, R.H.; Krause, P.C. Induction machine analysis for arbitrary displacement between multiple winding sets. IEEE Trans. Power Appar. Syst.
**1974**, PAS-93, 841–848. [Google Scholar] [CrossRef] - Zhao, Y.; Lipo, T.A. Space Vector PWM Control of Dual Three-phase Induction Machine Using Vector Space Decomposition. IEEE Trans. Ind. Appl.
**1995**, 31, 1100–1109. [Google Scholar] [CrossRef] - Binder, A.; Muetze, A. Scaling effects of inverter-induced bearing currents in AC machines. IEEE Trans. Ind. Appl.
**2008**, 44, 769–776. [Google Scholar] [CrossRef] - Holakooie, M.H.; Taheri, A.; Sharifian, M.B.B. MRAS based speed estimator for sensorless vector control of a linear induction motor with improved adaptation mechanisms. J. Power Electron.
**2015**, 15, 1274–1285. [Google Scholar] [CrossRef]

**Figure 7.**Load change condition of the 6PIM controlled by the duty cycle control strategy (

**a**) and proposed method (

**b**).

**Figure 8.**Speed direction change condition of the 6PIM controlled by the duty cycle control strategy (

**a**) and proposed method (

**b**).

**Figure 10.**The torque response of the 6PIM in steady state with 4 Nm load, derived by (

**a**) duty cycle control strategy; (

**b**) proposed method.

**Figure 11.**Load injection experiment of 6PIM, controlled by duty cycle control strategy (

**a**) and proposed method (

**b**).

${\mathbf{\Psi}}_{\mathit{s}}/\mathit{s}\mathit{e}\mathit{c}\mathit{t}\mathit{o}\mathit{r}\mathit{k}$ | ${\Delta}_{{\mathit{T}}_{\mathit{e}}}=\mathbf{1}$ | ${\Delta}_{{\mathit{T}}_{\mathit{e}}}=\mathbf{0}$ | ${\Delta}_{{\mathit{T}}_{\mathit{e}}}=-\mathbf{1}$ |
---|---|---|---|

${\Delta}_{{\varphi}_{s}}=1$ | ${V}_{k+1}$ | ${V}_{0}$ | ${V}_{k+10}$ |

${\Delta}_{{\varphi}_{s}}=-1$ | ${V}_{k+4}$ | ${V}_{0}$ | ${V}_{k+7}$ |

${\mathit{V}}_{\mathbf{0}}$ | ${\mathit{V}}_{\mathbf{1}}$ | ${\mathit{V}}_{\mathbf{2}}$ | ${\mathit{V}}_{\mathbf{3}}$ | ${\mathit{V}}_{\mathbf{4}}$ | ${\mathit{V}}_{\mathbf{5}}$ | ${\mathit{V}}_{\mathbf{6}}$ | ${\mathit{V}}_{\mathbf{7}}$ | ${\mathit{V}}_{\mathbf{8}}$ | ${\mathit{V}}_{\mathbf{9}}$ | ${\mathit{V}}_{\mathbf{10}}$ | ${\mathit{V}}_{\mathbf{11}}$ | ${\mathit{V}}_{\mathbf{12}}$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|

0, 21, 42, 63 | 48 | 56 | 60 | 28 | 12 | 14 | 15 | 7 | 3 | 35 | 57 | 49 |

${\mathit{\Psi}}_{\mathit{s}}/\mathit{S}\mathit{e}\mathit{c}\mathit{t}\mathit{o}\mathit{r}\mathit{k}$ | ${\Delta}_{{\mathit{i}}_{\mathit{q}}}=\mathbf{1}$ | ${\Delta}_{{\mathit{i}}_{\mathit{q}}}=\mathbf{0}$ | ${\Delta}_{{\mathit{i}}_{\mathit{q}}}=-\mathbf{1}$ |
---|---|---|---|

${\Delta}_{{i}_{d}}=1$ | ${V}_{k+1}$ | ${V}_{0}$ | ${V}_{k+10}$ |

${\Delta}_{{i}_{d}}=-1$ | ${V}_{k+4}$ | ${V}_{0}$ | ${V}_{k+7}$ |

Parameter, Unit | Value | Parameter, Unit | Value |
---|---|---|---|

Rated power, W | 700 | ${L}_{m}$, mH | 588 |

Rated voltage, V | 200 | ${L}_{s}$, mH | 603.3 |

Rated current, A | 2 | ${L}_{r}$, mH | 604.4 |

Rated speed, rpm | 1400 | ${R}_{s}$, $\mathsf{\Omega}$ | 15.0 |

Frequency, Hz | 50 | ${R}_{r}$, $\mathsf{\Omega}$ | 7.91 |

Method | No-Load | Rated Load | 50% Load |
---|---|---|---|

Conventional DTC | %45 | %49 | %47 |

Duty cycle control | %41 | %37 | %39 |

Proposed method | %9 | %12 | %10 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Heidari, H.; Rassõlkin, A.; Vaimann, T.; Kallaste, A.; Taheri, A.; Holakooie, M.H.; Belahcen, A.
A Novel Vector Control Strategy for a Six-Phase Induction Motor with Low Torque Ripples and Harmonic Currents. *Energies* **2019**, *12*, 1102.
https://doi.org/10.3390/en12061102

**AMA Style**

Heidari H, Rassõlkin A, Vaimann T, Kallaste A, Taheri A, Holakooie MH, Belahcen A.
A Novel Vector Control Strategy for a Six-Phase Induction Motor with Low Torque Ripples and Harmonic Currents. *Energies*. 2019; 12(6):1102.
https://doi.org/10.3390/en12061102

**Chicago/Turabian Style**

Heidari, Hamidreza, Anton Rassõlkin, Toomas Vaimann, Ants Kallaste, Asghar Taheri, Mohammad Hosein Holakooie, and Anouar Belahcen.
2019. "A Novel Vector Control Strategy for a Six-Phase Induction Motor with Low Torque Ripples and Harmonic Currents" *Energies* 12, no. 6: 1102.
https://doi.org/10.3390/en12061102