Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators
Abstract
:1. Introduction
2. System Modeling
3. Problem Formulation
3.1. Global Objective Function
- 1)
- The NC switch is down-stream from the outage node, . For a properly ordered graph, this implies .
- 2)
- The NO switch is in the cut-set of NC switch .
3.2. Local Objective Function
3.2.1. Interchange Constraints
3.2.2. Source Loading
3.2.3. Source Relaxation
3.3. Computation
3.4. Numerical Implementation
- The switching operations at are independent.
- The selected interchanging pair at -th iteration depends on switching operation of iteration if it is in the cut-set of the previous switching operation. Otherwise, a backward search technique with stop criteria as the following is done to check the dependency of the switching at -th iteration:
- 1)
- Finding the switching operation that satisfies the condition of dependent switching.
- 2)
- All iterations are checked, and there is no dependency on switching, therefore, the th switching is independent.
- The dependencies can be illustrated graphically by a tree whose branches represent the interchanges at each restoration step and nodes represent the restoration number. If there is an edge between two nodes and such that , then the switching operation of -th iteration depends on the switching operation of -th iteration. The independent nodes are connected to a reference node.
4. Case Study
4.1. Outage Analysis and Optimum Restoration Policies
4.2. Optimum Switch Location
4.3. A Comparative Study of the Use of Genetic Algorithm and the Proposed Algorithm
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
The cut-set of tree branch . | |
The customer damage function. | |
The connected load of cut-set . | |
The load limit for source . | |
The fundamental cut-set matrix. | |
The -th column of matrix . | |
The -th row of matrix . | |
The binary decision variable for the pair . | |
The set of feasible interchange pairs at -th iteration. | |
The interrupted loads when the failure is at node . | |
Load vector containing the loads associated with each load link. | |
The link-set of link . | |
The annual cost of an RCS. | |
The loading of source . | |
The repair time. | |
The switching time of RCSs. | |
The transferred loads to the source by interchanging pair at -th restoration iteration. | |
The total source load at the -th restoration iteration. | |
Binary decision variable of device . | |
The voltage of node . | |
The minimum voltage limit at node . | |
The impedance of section . | |
The failure rate of node . |
References
- Mansor, N.N.; Levi, V. Integrated planning of distribution networks considering utility planning concepts. IEEE Trans. Power Syst. 2017, 32, 4656–4672. [Google Scholar] [CrossRef]
- Maza-Ortega, J.M.; Barragán-Villarejo, M.; de Paula García-López, F.; Jiménez, J.; Mauricio, J.M. A multi-platform lab for teaching and research in active distribution networks. IEEE Trans. Power Syst. 2017, 32, 4861–4870. [Google Scholar] [CrossRef]
- Safdarian, A.; Farajollahi, M.; Fotuhi-Firuzabad, M. Impacts of remote control switch malfunction on distribution system reliability. IEEE Trans. Power Syst. 2017, 32, 1572–1573. [Google Scholar] [CrossRef]
- Heidari, A.; Agelidis, V.G.; Kia, M. Considerations of sectionalizing switches in distribution networks with distributed generation. IEEE Trans. Power Deliv. 2015, 30, 1401–1409. [Google Scholar] [CrossRef]
- Heidari, A.; Agelidis, V.G.; Kia, M.; Pou, J.; Aghaei, J.; Shafie-Khah, M.; Catalão, J.P. Reliability optimization of automated distribution networks with probability customer interruption cost model in the presence of DG units. IEEE Trans. Smart Grid 2017, 8, 305–315. [Google Scholar] [CrossRef]
- Calderaro, V.; Lattarulo, V.; Piccolo, A.; Siano, P. Optimal switch placement by alliance algorithm for improving microgrids reliability. IEEE Trans. Ind. Inform. 2012, 8, 925–934. [Google Scholar] [CrossRef]
- Bezerra, J.R.; Barroso, G.C.; Leão, R.P.S.; Sampaio, R.F. Multiobjective optimization algorithm for switch placement in radial power distribution networks. IEEE Trans. Power Deliv. 2015, 30, 545–552. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.C.; Schneider, K.P.; Ton, D.T. Placement of remote-controlled switches to enhance distribution system restoration capability. IEEE Trans. Power Syst. 2016, 31, 1139–1150. [Google Scholar] [CrossRef]
- Abiri-Jahromi, A.; Fotuhi-Firuzabad, M.; Parvania, M.; Mosleh, M. Optimized sectionalizing switch placement strategy in distribution systems. IEEE Trans. Power Deliv. 2012, 27, 362–370. [Google Scholar] [CrossRef]
- Lim, I.; Sidhu, T.S.; Choi, M.S.; Lee, S.J.; Ha, B.N. An optimal composition and placement of automatic switches in DAS. IEEE Trans. Power Deliv. 2013, 28, 1474–1482. [Google Scholar] [CrossRef]
- Heidari, A.; Agelidis, V.G.; Zayandehroodi, H.; Pou, J.; Aghaei, J. On exploring potential reliability gains under islanding operation of distributed generation. IEEE Trans. Smart Grid 2016, 7, 2166–2174. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Niknam, T. Optimal distribution feeder reconfiguration for reliability improvement considering uncertainty. IEEE Trans. Power Deliv. 2014, 29, 1344–1353. [Google Scholar] [CrossRef]
- Cossi, A.M.; Silva, L.G.W.D.; Lazaro, R.A.R.; Mantovani, J.R.S. Primary power distribution systems planning taking into account reliability, operation and expansion costs. IET Gener. Transm. Distrib. 2012, 6, 274–284. [Google Scholar] [CrossRef]
- Billinton, R.; Jonnavithula, S. Optimal switching device placement in radial distribution systems. IEEE Trans. Power Deliv. 1996, 11, 1646–1651. [Google Scholar] [CrossRef]
- Wang, L.; Singh, C. Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm. IEEE Trans. Syst. Man Cybern. Part C 2008, 38, 757–764. [Google Scholar] [CrossRef]
- Falaghi, H.; Haghifam, M.R.; Singh, C. Ant colony optimization-based method for placement of sectionalizing switches in distribution networks using a fuzzy multiobjective approach. IEEE Trans. Power Deliv. 2009, 24, 268–276. [Google Scholar] [CrossRef]
- Zambon, E.; Bossois, D.Z.; Garcia, B.B.; Azeredo, E.F. A novel nonlinear programming model for distribution protection optimization. IEEE Trans. Power Deliv. 2009, 24, 1951–1958. [Google Scholar] [CrossRef]
- Ferreira, G.D.; Bretas, A.S. A nonlinear binary programming model for electric distribution systems reliability optimization. Int. J. Electr. Power Energy Syst. 2012, 43, 384–392. [Google Scholar] [CrossRef]
- Lei, S.; Wang, J.; Hou, Y. Remote-controlled switch allocation enabling prompt restoration of distribution systems. IEEE Trans. Power Syst. 2017, 33, 3129–3142. [Google Scholar] [CrossRef]
- Izadi, M.; Farajollahi, M.; Safdarian, A.; Fotuhi-Firuzabad, M. A multistage MILP-based model for integration of remote control switch into distribution networks. In Proceedings of the 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China, 16–20 October 2016; pp. 1–6. [Google Scholar]
- Farajollahi, M.; Fotuhi-Firuzabad, M.; Safdarian, A. Optimal placement of sectionalizing switch considering switch malfunction probability. IEEE Trans. Smart Grid 2017, 10, 403–413. [Google Scholar] [CrossRef]
- Popović, Ž.; Knezević, S.; Brbaklić, B. Optimal reliability improvement strategy in radial distribution networks with island operation of distributed generation. IET Gener. Transm. Distrib. 2018, 12, 78–87. [Google Scholar] [CrossRef]
- Andervazh, M.R.; Olamaei, J.; Haghifam, M.R. Adaptive multi-objective distribution network reconfiguration using multi-objective discrete particles swarm optimisation algorithm and graph theory. IET Gener. Transm. Distrib. 2013, 7, 1367–1382. [Google Scholar] [CrossRef]
- Isapour Chehardeh, M.; Hatziadoniu, C.J. A systematic method for reliability index evaluation of distribution networks in the presence of distributed generators. In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018. [Google Scholar]
- Eini, R.; Abdelwahed, S. Distributed Model Predictive Control Based on Goal Coordination for Multi-Zone Building Temperature. In Proceeding of the IEEE Green Technologies Conference (GreenTech), Lafayette, IN, USA, 3–6 April 2019. [Google Scholar]
- Yekkehkhany, A.; Hojjati, A.; Hajiesmaili, M.H. GB-PANDAS:: Throughput and heavy-traffic optimality analysis for affinity scheduling. ACM SIGMETRICS Perform. Eval. Rev. 2018, 45, 2–14. [Google Scholar] [CrossRef]
- Yekkehkhany, A.; Nagi, R. Blind GB-PANDAS: A Blind Throughput-Optimal Load Balancing Algorithm for Affinity Scheduling. arXiv, 2019; arXiv:1901.04047. Available online: https://arxiv.org/abs/1901.04047 (accessed on 15 March 2019).
- Zidan, A.; Khairalla, M.; Abdrabou, A.M.; Khalifa, T.; Shaban, K.; Abdrabou, A.; Shatshat, R.E.; Gaouda, A.M. Fault detection, isolation, and service restoration in distribution systems: State-of-the-art and future trends. IEEE Trans. Smart Grid 2017, 8, 2170–2185. [Google Scholar] [CrossRef]
- Billinton, R. Methods to Consider Customer Interruption Costs in Power System Analysis; Technical Report, Cigré Task Force 38.06.01; CIGRE: Paris, France, 2001. [Google Scholar]
- Schneider, K.P.; Chen, Y.; Engle, D.; Chassin, D. A taxonomy of North American radial distribution feeders. In Proceedings of the IEEE PES General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–6. [Google Scholar]
Feeder 1 | Feeder 2 | Feeder 3 | Feeder 4 |
---|---|---|---|
, , , and | and | and | |
, , , , , , , and | , , , , , and | , , , ,, , , , , , and | ,, and |
, , , , and | ,, , , , and | , , , , and | , , , and |
- | , , , , and | - | , ,,,, |
- | and | - | - |
Description | Feeder 1 | Feeder 2 | Feeder 3 | Feeder 4 |
---|---|---|---|---|
Upgraded switches | 10, 19, 31, 161, and 170 | 70 and 162 | 99, 112, and 163 | 144, 151, 169, and 164 |
Exp. restored energy (kWh) | 704.78 | 358.2 | 607.09 | 511.72 |
Total cost (U.S.$) | 5841.0 | 6326.9 | 5609.1 | 6326.2 |
Population Size | Number of switches | Ex. energy restored (kWh) | Total cost ($) | No. of generations | ||||
---|---|---|---|---|---|---|---|---|
TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | |
10 | 14 | 7 | 730.36 | 695.47 | 8610.8 | 6519.0 | 5 | 11 |
20 | 4 | 6 | 348.9 | 690.82 | 7004.9 | 6218.8 | 19 | 12 |
50 | 6 | 5 | 683.4 | 683.84 | 6247.9 | 5928.3 | 22 | 17 |
100 | 2 | 5 | 460.55 | 704.78 | 5900.3 | 5841.0 | 22 | 19 |
200 | 5 | 5 | 704.78 | 704.78 | 5841.0 | 5841.0 | 29 | 22 |
Population size | Number of switches | Ex. energy restored (kWh) | Total cost ($) | No. of generations | ||||
---|---|---|---|---|---|---|---|---|
TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | |
10 | 16 | 17 | 516.37 | 779.21 | 10,142.0 | 9366.0 | 15 | 6 |
20 | 10 | 7 | 530.33 | 702.45 | 8166.2 | 6489.9 | 25 | 14 |
50 | 3 | 2 | 348.90 | 348.90 | 6685.3 | 6365.7 | 22 | 15 |
100 | 2 | 2 | 334.94 | 358.20 | 6423.9 | 6326.9 | 20 | 17 |
200 | 2 | 2 | 358.20 | 358.20 | 6326.9 | 6326.9 | 25 | 19 |
Population size | Number of switches | Ex. energy restored (kWh) | Total cost ($) | No. of generations | ||||
---|---|---|---|---|---|---|---|---|
TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | |
10 | 12 | 6 | 553.59 | 579.17 | 8708.5 | 6684.2 | 17 | 13 |
20 | 7 | 4 | 530.33 | 590.80 | 7207.4 | 5996.5 | 22 | 14 |
50 | 3 | 3 | 590.80 | 607.09 | 5676.9 | 5609.1 | 23 | 17 |
100 | 3 | 3 | 600.11 | 607.09 | 5638.2 | 5609.1 | 23 | 19 |
200 | 3 | 3 | 600.11 | 607.09 | 5638.2 | 5609.1 | 27 | 20 |
Population size | Number of switches | Ex. energy restored (kWh) | Total cost ($) | No. of generations | ||||
---|---|---|---|---|---|---|---|---|
TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | TGA | EG/GA | |
10 | 11 | 5 | 334.94 | 518.67 | 9300.3 | 6616.7 | 22 | 10 |
20 | 5 | 2 | 341.92 | 334.94 | 7353.6 | 6423.9 | 20 | 12 |
50 | 3 | 4 | 362.86 | 511.72 | 6946.7 | 6326.2 | 19 | 11 |
100 | 2 | 4 | 348.90 | 511.72 | 6365.7 | 6326.2 | 22 | 13 |
200 | 2 | 4 | 348.90 | 511.72 | 6365.7 | 6326.2 | 25 | 16 |
EENS (kWh/year) | Feeder 1 | Feeder 2 | Feeder 3 | Feeder 4 |
---|---|---|---|---|
Before | 1620.1 | 1617.73 | 1631.69 | 1659.60 |
After | 680.35 | 1143.64 | 822.31 | 993.55 |
Improvement | 58% | 29.31% | 49.6% | 40.13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isapour Chehardeh, M.; Hatziadoniu, C.J. Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators. Energies 2019, 12, 1025. https://doi.org/10.3390/en12061025
Isapour Chehardeh M, Hatziadoniu CJ. Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators. Energies. 2019; 12(6):1025. https://doi.org/10.3390/en12061025
Chicago/Turabian StyleIsapour Chehardeh, Maziar, and Constantine J. Hatziadoniu. 2019. "Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators" Energies 12, no. 6: 1025. https://doi.org/10.3390/en12061025
APA StyleIsapour Chehardeh, M., & Hatziadoniu, C. J. (2019). Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators. Energies, 12(6), 1025. https://doi.org/10.3390/en12061025