Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region
Abstract
:1. Introduction
2. Materials and Methods
Photovoltaic Array
3. The Brazilian Semiarid Region: Renewable Energy Appeal and the Effects of Climate Change on Water Resources
3.1. The Problem Is Not Drought, but the Local Structural Basis
3.2. The Appeal of Renewable Energetic Sources in the Brazilian Semi-Arid
3.3. Climate Change and Water Resource Effects
4. Desalination in the Brazilian Semi-Arid and the Use of Renewable Energy Resources
5. Desalination System in the PAD: Use of Solar Energy and Productive Units for Concentrate Use
- (1)
- Drinking water is produced by the desalinator;
- (2)
- The residue from the desalination process is used in tiapia-rearing tanks;
- (3)
- The pisciculture residue is used in Atriplex cultivation;
- (4)
- The fodder produced during the process is used for sheep and goat feeding.
6. PSPP System for Electric Demands
- Median average solar irradiance in an inclined plane with an angle equal to the latitude detected in the stations closest to the communities already contemplated by the PAD, at a value of 5.54 KWh/m2·day [19];
- An average energy consumption of 3.39 Kwh/m3 was considered in the simulation, by using the WinFlow software, from the total operating cost of the PAD desalination system and within the range presented by [76] for smaller BWRO system installations;
- A system efficiency loss of 0.5% per year over a span of 25 years;
- 320 Wp power modules without tracking systems;
- Concerning the total PAD demand, a universe of 500 thousand people was considered, i.e., approximately 100 thousand families, and a daily water consumption of 40 L per family.
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN-WWAP. The United Nations World Water Development Report 2015: Water for a Sustainable World; UN-WWAP: Perugia, Italy, 2015; ISBN 978-9-23-100071-3. [Google Scholar]
- Melorose, J.; Perroy, R.; Careas, S. World Population Prospects; United Nations: San Francisco, CA, USA, 2015; Volume 1, pp. 587–592. [Google Scholar]
- IEA. World Energy Outlook 2015; IEA: Paris, France, 2015; ISBN 978-9-26-424366-8. [Google Scholar]
- IPCC. AR5 Climate Change 2014: Impacts, Adptation, and Vulnerability. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 15 June 2017).
- ANA—Agência Nacional de Águas. Conjuntura dos recursos hídricos no Brasil 2017: Relatório pleno. Conjunt. Recur. Hídricos Bras. 2017, 2017, 169. [Google Scholar]
- Yang, X.; Williams, M. Landforms and processes in arid and semi-arid environments. Catena 2015, 134, 1–3. [Google Scholar] [CrossRef]
- ANA—Agência Nacional de Águas. Superintendência de Planejamento de Recursos Hídricos Conjuntura dos Recursos Hídricos no Brasil—Informe 2014—Encarte Especial sobre a Crise Hídrica; ANA: Brasília, Brasil, 2015; Volume 30. [Google Scholar]
- Buriti, C.; Aguiar, J. O Tempo e a Cultura da Natureza: Uma análise das sensibilidades dos escritores regionais em relação ao semiárido do Nordeste brasileiro. Histórica Rev. Eletrônica Arq. Público Estado São Paulo 2009, 38. Available online: http://www.historica.arquivoestado.sp.gov.br/materias/anteriores/edicao38/materia05/ (accessed on 15 June 2017).
- Araujo, T. Economia do semiárido nordestino: A crise corno oportunidade. Revista coletiva 2012, 6, 1–4. [Google Scholar]
- Samuel, A.S.; Felipe, C.R.; Hermes, C.; Moura, A.; Henrique, L.; Ferreira, R.S.; Ll, B. Sustainable Desalination Process: Fresh Water Program; International Desalination Association: São Paulo, Brazil, 2017. [Google Scholar]
- Wwap, World Water Assessment Proframme. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; United Nations: Paris, France, 2018. [Google Scholar]
- Nair, S.; George, B.; Malano, H.M.; Arora, M.; Nawarathna, B. Water-energy-greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 2014, 89, 1–10. [Google Scholar] [CrossRef]
- Franchini, G.; Perdichizzi, A. Modeling of a solar driven HD (humidification-dehumidification) desalination system. Energy Procedia 2014, 45, 588–597. [Google Scholar] [CrossRef]
- California Department of Water Resources. California Water Plan Volume 3—Resource Management Strategies Desalination (Brackish and Sea Water); California Department of Water Resources: Sacramento, CA, USA, 2013; Volume 3.
- Balaban, N. Desalination 1966–2016, The origins, evolution and role of the Desalination Journal. Desalination 2017, 401, xvi–xx. [Google Scholar]
- Shatat, M.; Worall, M.; Riffat, S. Opportunities for solar water desalination worldwide: Review. Sustain. Cities Soc. 2013, 9, 67–80. [Google Scholar] [CrossRef]
- Ghenai, C.; Merabet, A.; Salameh, T.; Pigem, E.C. Grid-tied and stand-alone hybrid solar power system for desalination plant. Desalination 2018, 435, 172–180. [Google Scholar] [CrossRef]
- SEMARH—Secretaria de Meio Ambiente e Recursos Hídricos do Rio Grande Norte. Pregão Eletrônico N.o 02/2017; SEMARH: Natal, Brazil, 2017; pp. 1–63.
- CEPEL—Centro de Pesquisas de Energia Elétrica. Centro de referência para Energia Solar e Eólica Sérgio Brito. 2018. Available online: http://www.cresesb.cepel.br/ (accessed on 30 September 2018).
- UNEP—United Nations Environment Management Group. Global Drylands: A UM System-Wide Response; United Nations Environment Management Group: Geneva, Switzerland, 2011. [Google Scholar]
- Zhang, J.; Ren, W.; An, P.; Pan, Z.; Wang, L.; Dong, Z.; He, D.; Yang, J.; Pan, S.; Tian, H. Responses of crop water use efficiency to climate change and agronomic measures in the semiarid area of Northern China. PLoS ONE 2015, 10, e0137409. [Google Scholar] [CrossRef]
- Maleki, S.; Khormali, F.; Bodaghabadi, M.B.; Mohammadi, J.; Kehl, M. Geological controlling soil organic carbon and nitrogen density in a hillslope landscape, semiarid area of Golestan province, Iran. Desert 2017, 2, 221–228. [Google Scholar]
- Lopez-Gunn, E.; Zorrilla, P.; Prieto, F.; Llamas, M.R. Lost in translation? Water efficiency in Spanish agriculture. Agric. Water Manag. 2012, 108, 83–95. [Google Scholar] [CrossRef]
- Brasil, Ministério do Desenvolvimento Regional. Delimitação do semiárido. Available online: http://sudene.gov.br/planejamento-regional/delimitacao-do-semiarido (accessed on 15 June 2017).
- ANA—Agência Nacional de Águas. Mudanças Climáticas E Recursos Hídricos—Avaliações E Diretrizes Para Adaptação; Gges, G.G., Ed.; Agência Nacional de Águas: Brasília, Brazil, 2016; Volume 1, ISBN 978-8-57-811079-6.
- De Nys, E.; Engle, N.L.; Magalhães, A.R. Secas no Brasil: Política e Gestão Proativas; Centro de Gestão e Estudos Estratégicos-CGEE: Brasília, Brazil, 2016; ISBN 978-8-55-569115-7.
- Rodriguez, R.D.G.; Pruski, F.F.; Singh, V.P. Estimated Per Capita Water Usage Associated with Different Levels of Water Scarcity Risk in Arid and Semiarid Regions. Water Resour. Manag. 2016, 30, 1311–1324. [Google Scholar] [CrossRef]
- Williams, W.D. Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes Reserv. Res. Manag. 1999, 4, 85–91. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Barbosa, E.M.; Dantas Neto, J. Gestão de recursos hídricos no rio grande do norte: Uma análise da implementação da política hídrica. HOLOS 2013, 1, 3–27. [Google Scholar] [CrossRef]
- PBMC. Impactos, Vulnerabilidades e Adaptação: Primeiro Relatório de Avaliação Nacional—Volume 2; Painel Brasileiro de Mudanças Climáticas: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Franzitta, V.; Curto, D.; Milone, D.; Viola, A. The Desalination Process Driven by Wave Energy: A Challenge for the Future. Energies 2016, 9, 1032. [Google Scholar] [CrossRef]
- Diniz, C.C. Celso Furtado e o desenvolvimento regional. Nova Econ. 2009, 19, 227–249. [Google Scholar] [CrossRef] [Green Version]
- Gude, V.G. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Biotechnol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- INPE—Instituto Nacional de Pesquisas Espaciais. Laboratório de Modelagem e Estudos de Recursos Renováveis. Available online: http://labren.ccst.inpe.br/ (accessed on 10 October 2018).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Available online: https://www.ibge.gov.br/ (accessed on 10 October 2018).
- ANEEL—Agência Nacional de Energia Elétrica. Available online: http://www.aneel.gov.br/ (accessed on 10 October 2018).
- INSA—Instituto Nacional do Semiárido. Sistema de Gestão da Informação e do Conheicmento do Semiárido Brasileiro. Available online: http://sigsab.insa.gov.br/ (accessed on 10 October 2018).
- Pereira, E.B.; Martins, F.R.; De Abreu, S.L.; Rüther, R. Atlas Brasileiro de Energia Solar; Inpe: São José dos Campos, Brazil, 2017. [Google Scholar]
- ANEEL—Agência Nacional de Energia Elétrica. Banco de Informação de Geração. Available online: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm (accessed on 10 October 2018).
- ONS—Operador Nacional do Sistema. Histórico de operação. Available online: http://ons.org.br/ (accessed on 11 November 2018).
- IPCC. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers; IPCC: Geneva, Switzerland, 2014; Volume 31. [Google Scholar]
- PBMC. Mudanças Climáticas e Cidades; Painel Brasileiro de Mudanças Climáticas: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Delgado, E.; Fortes, A.; Massaru, A.; Pavão, E.; Pellegrino, G.; Monteiro, J.E. Impactos e Vulnerabilidades da Agricultura Brasileira às Mudanças Climáticas; Ministério da Ciência, Tecnologia e Inovação: Brasília, Brazil, 2016; ISBN 978-8-58-806330-3.
- CGEE—Centro de Gestão e Estudos Estratégicos. Estudos Relativos às Mudanças Climáticas e Recursos Hídricos para Embasar o Plano Climáticas. Eixo 1—Cenários de Mudanças para Estudos de Adaptação no Setor de Recursos Hídricos; CGEE: Fortaleza, Brazil, 2014. [Google Scholar]
- Marengo, J.A. Mudanças Climáticas Globais e seus Efeitos sobre a Biodiversidade: Caracterização do Clima Atual e Definição das Alterações Climáticas para o Território Brasileiro ao Longo do Século XXI. Série Biodivers. 2007, 26, 212. [Google Scholar]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- De Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Brasil, Ministério do Meio Ambiente. Programa Água Doce: Documento base; MMA: Brasília, Brazil, 2012; Volume 324.
- Brasil, Ministério do Meio Ambiente. Available online: http://www.mma.gov.br/ (accessed on 11 November 2018).
- Brasil, Ministéria da Saúde. Portaria 2914/2011. Diário União 2011, 2011, 1–16. Available online: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html (accessed on 11 November 2018).
- SEMARH—Secretaria de Meio Ambiente e Recursos Hídricos do Rio Grande Norte. Available online: www.semarh.rn.gov.br (accessed on 10 October 2018).
- Hanasaki, N.; Yoshikawa, S.; Kakinuma, K.; Kanae, S. A seawater desalination scheme for global hydrological models. Hydrol. Earth Syst. Sci. 2016, 20, 4143–4157. [Google Scholar] [CrossRef]
- Bremere, I.; Kennedy, M.; Stikker, A.; Schippers, J. How water scarcity will effect the growth in the desalination market in the coming 25 years. Desalination 2001, 138, 7–15. [Google Scholar] [CrossRef]
- Ghaffour, N.; Reddy, V.K.; Abu-Arabi, M. Technology development and application of solar energy in desalination: MEDRC contribution. Renew. Sustain. Energy Rev. 2011, 15, 4410–4415. [Google Scholar] [CrossRef]
- Ziolkowska, J.R. Is Desalination Affordable?—Regional Cost and Price Analysis. Water Resour. Manag. 2014, 29, 1385–1397. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. Renewable Energy Powered Desalination Systems: Technologies and Economics-State of the Art. In Proceedings of the Twelfth International Water Technology Conference, Alexandria, Egypt, 27–30 March 2008; pp. 1–38. [Google Scholar]
- Mabrouk, A.N.; Fath, H.E.S. Technoeconomic study of a novel integrated thermal MSF-MED desalination technology. Desalination 2015, 371, 115–125. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Isaka, M. Water Desalination Using Renewable Energy. Int. Renew. Energy Agency 2012, l12, 1–3. [Google Scholar]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- Manju, S.; Sagar, N. Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renew. Sustain. Energy Rev. 2017, 73, 594–609. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and sustainability—An appraisal and current perspective. Water Res. 2016, 89, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Al-Karaghouli, A.A.; Kazmerski, L. Renewable Energy Opportunities in Water Desalination. In Desalation Trends Technologies; IntechOpen: London, UK, 2011; pp. 149–194. [Google Scholar]
- Ali, M.T.; Fath, H.E.S.; Armstrong, P.R. A comprehensive techno-economical review of indirect solar desalination. Renew. Sustain. Energy Rev. 2011, 15, 4187–4199. [Google Scholar] [CrossRef]
- Zhang, Y.; Sivakumar, M.; Yang, S.; Enever, K.; Ramezanianpour, M. Application of solar energy in water treatment processes: A review. Desalination 2018, 428, 116–145. [Google Scholar] [CrossRef]
- Dominkovic, D.F.; Stark, G.; Hodge, B.M.; Pedersen, A.S. Integrated energy planning with a high share of variable renewable energy sources for a Caribbean Island. Energies 2018, 11, 2193. [Google Scholar] [CrossRef]
- Fiorenza, G.; Sharma, V.K.; Braccio, G. Techno-economic evaluation of a solar powered water desalination plant. Energy Convers. Manag. 2003, 44, 2217–2240. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Qolipour, M.; Rezaei, M.; Babaee-Tirkolaee, E. Investigation of off-grid photovoltaic systems for a reverse osmosis desalination system: A case study. Desalination 2019, 454, 91–103. [Google Scholar] [CrossRef]
- Al-Nimr, M.A.; Kiwan, S.M.; Talafha, S. Hybrid solar-wind water distillation system. Desalination 2016, 395, 33–40. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef]
- Zoulias, E.I.; Lymberopoulos, N. Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renew. Energy 2007, 32, 680–696. [Google Scholar] [CrossRef]
- Tafech, A.; Milani, D.; Abbas, A. Water storage instead of energy storage for desalination powered by renewable energy—King Island case study. Energies 2016, 9, 839. [Google Scholar] [CrossRef]
- USAID. Watergy: Taking advantage of untapped energy and water efficiency opportunities in municipal water systems. Alliance Save Energy 2002, 11, 140. [Google Scholar]
- Shemer, H.; Semiat, R. Sustainable RO desalination—Energy demand and environmental impact. Desalination 2017, 424, 10–16. [Google Scholar] [CrossRef]
- Ng, K.C.; Shahzad, M.W. Sustainable desalination using ocean thermocline energy. Renew. Sustain. Energy Rev. 2018, 82, 240–246. [Google Scholar] [CrossRef]
- Khan, Z.; Linares, P.; García-González, J. Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments. Renew. Sustain. Energy Rev. 2017, 67, 1123–1138. [Google Scholar] [CrossRef]
- Zarzo, D.; Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 2018, 427, 1–9. [Google Scholar] [CrossRef]
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- Tenne, A. Sea Water Desalination in Israel: Planning, coping with difficulties, and economic aspects of long-term risks. Isr. Water Auth. Minist. Infrastruct. 2010, October, 1–13. [Google Scholar]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Semblante, G.U.; Lee, J.Z.; Lee, L.Y.; Ong, S.L.; Ng, H.Y. Brine pre-treatment technologies for zero liquid discharge systems. Desalination 2018, 441, 96–111. [Google Scholar] [CrossRef]
- Vakilifard, N.; Anda, M.; Bahri, P.A.; Ho, G. The role of water-energy nexus in optimising water supply systems—Review of techniques and approaches. Renew. Sustain. Energy Rev. 2017, 82, 1424–1432. [Google Scholar] [CrossRef]
- Lee, S.W.; Sarp, S.; Jeon, D.J.; Kim, J.H. Smart water grid: The future water management platform. Desalin. Water Treat. 2015, 55, 339–346. [Google Scholar] [CrossRef]
- Ishimatsu, T.; Doufene, A.; Alawad, A.; de Weck, O. Desalination network model driven decision support system: A case study of Saudi Arabia. Desalination 2017, 423, 65–78. [Google Scholar] [CrossRef]
- Drendel, R.; Kinzli, K.D.; Koebel, A.; Missimer, T.M. Management of BWRO systems using long-term monitoring of feed water quality to avoid future membrane process failure. Desalin. Water Treat. 2016, 57, 16209–16219. [Google Scholar] [CrossRef]
- Grilo, J.A.; Braga, C.C.; do Vale, M.B.; de Oliveira, J.K.S.; Bezerra, R.D. Avaliação do Efluente do Dessalinizador e da Tilapicultura em São José do Seridó-Rn. HOLOS 2016, 7, 194–208. [Google Scholar] [CrossRef]
- Brasil, Ministério do Meio Ambiente. Available online: http://www.mma.gov.br/agua/agua-doce (accessed on 10 October 2018).
- Brasil, Ministério da Integração Nacional. Projeto de Integração do Rio São Francisco; Ministério da INtegração Nacional: Brasília, Brazil, 2014; Volume 8.
- Constantino, G.; Freitas, M.; Fidelis, N.; Pereira, M.G. Adoption of photovoltaic systems along a sure path: A life-cycle assessment (LCA) study applied to the analysis of GHG emission impacts. Energies 2018, 11, 2806. [Google Scholar] [CrossRef]
- Amarante, O.A.; Brower, M.; Zack, J.; Eolica, C.S.; Solutions, T. Atlas do Potencial Eólico Brasileiro; Ministerio de Minas e Energia: Brasília, Brazil, 2001. [Google Scholar]
- IDA. IDA Desalination Yearbook 2016–2017; IDA: Cardiff, UK, 2017. [Google Scholar]
- Water Technology. Available online: chttps://www.water-technology.net/ (accessed on 10 October 2018).
- Lambert, M. Got Desalination in Your Water Portfolio? IDE Technologies: Houston, TX, USA, 2016. [Google Scholar]
- Aguas Antofagasta. VI Proceso Tarifario de Concesiones de Servicios Sanitarios, II Región de Antofagasta, Período 2016–2021; ECOAGUA: Madrid, Spain, 2016. [Google Scholar]
- Zheng, X.; Chen, D.; Wang, Q.; Zhang, Z. Seawater desalination in China: Retrospect and prospect. Chem. Eng. J. 2014, 242, 404–413. [Google Scholar] [CrossRef]
- Jia, X.; Klemeš, J.; Varbanov, P.; Wan Alwi, S. Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China. Energies 2019, 12, 463. [Google Scholar] [CrossRef]
- Morote, Á.-F.; Olcina, J.; Hernández, M. The Use of Non-Conventional Water Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions: South-Eastern Spain. Water 2019, 11, 93. [Google Scholar] [CrossRef]
- Morote, Á.F.; Rico, A.M.; Moltó, E. Critical review of desalination in Spain: A resource for the future? Geogr. Res. 2017, 55, 412–423. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G.; Ghaffour, N.; Leiknes, T.O.; Amy, G.L. Managed aquifer recharge (MAR) economics for wastewater reuse in low population wadi communities, Kingdom of Saudi Arabia. Water 2014, 6, 2322–2338. [Google Scholar] [CrossRef]
F | Benefitted families |
D | Water demand (m3) |
L | Daily water consumption per family |
K | Consumption (wh/m3) |
WH | Sum of power consumption |
Ppv | Module output power |
PPV, STC | Power output under standard test conditions (STC) |
1ƒPV | PV reduction factor |
2 G | Irradiation |
3 GSTC | STC irradiation |
4αp | Energy temperature coefficient |
5T c | Temperature of the photovoltaic module |
6Tc,stc | Temperature of the module under STC |
NP | Number of required modules |
Raw Feed (L/h) | 1.525 | Product flow (m3/h) | 0.64 |
Product Flow (L/h) | 640 | Annual operating time (days) | 208 |
Concentrate (L/h) | 884 | Energy consumption (Kwh/m3) | 3.39 |
Membrane | 3 | Total cost | 42,778.19 |
Raw Feed TDS (mg/L) | 1.193 | Membrane cost (U$/m3) | 1102.94 |
Product TDS (mg/L) | 105 | Vessel cost (U$/m3) | 1225.49 |
Product TDS (mg/L) | 1.980 | System cost (U$/m3) | 40,441.18 |
System Recovery | 0.42 | Other costs | 8.58 |
Type of Input Water | Type of Energy | Water Cost (US$/m3) |
---|---|---|
Brackish water | Conventional fuel | 0.27–1.38 |
Photovoltaic cells | 5.85–13.42 | |
Geothermal | 2.6 | |
Seawater | Conventional fuel | 0.46–3.5 |
Wind energy | 1.3–6.5 | |
Solar collectors | 4.55–10.40 | |
Photovoltaic cells | 4.08–11.7 |
Total Module Area (m2) | 35.2 | Fresh Water Production (L/day) | 1.800 |
1 Photovoltaic Solar Panels (245 Wp and 1.64 m2) | 12 | Electrical Energy Consumption (KWh) | 3 |
2 Photovoltaic Solar Panels (315 Wp and 1.94 m2) | 8 | Flow (m3/h) | 0.55 |
Installed Capacity (KWp) | 5.46 | Water recovery | 33% |
Desalinization Capacity (L/H) | 500 | Operation time (days) | 208 |
Processed Raw Water (L/day) | 5400 | Operation costs (US$/m3) | 0.49 |
Concentrated brine Production (L/day) | 10,000 | Production cycle (month) | 6 |
Fresh Water Production (L/day) | 4000 | Nursery capacity (t) | 1.5 |
Families | 87 | Fish weight (Kg) | 0.5–0.7 |
Nurseries (tanks) | 2 | Atriplex cultivation area (m2) | 10,000 |
Initiatives | Budget | Beneficiaries | States | Per Capita |
---|---|---|---|---|
São Francisco River Integration Project | R$ 8,200,000,000.00 | 12,000,000 | 4 | R$ 683.33 1 US$ 368.94 |
Freshwater Program | R$ 254,000,000.00 | 500,000 | 10 | R$ 508.00 2 US$ 296.09 |
Plants | Local | Production | Energy Consumption | ||
---|---|---|---|---|---|
m3/day | m3/year | KWh/m3 | GWh/year | ||
ETP Llobregat | Barcelona, Spain | 200.000 | 60.000.00 | 3 | 180 |
The Perth Seawater Desalination | Kwinana, Australia | 250.000 | 45.000.00 | 4–6 | 270 |
Carlsbad Desalination | Carlsbad, USA | 204.390 | 69.000.00 | 2.75–3,3 | 228 |
Sorek Desalination | Sorek, Israel | 624.000 | 290.000.0 | 3.3 | 957 |
Hadera Desalination | Hadera, Israel | 525.000 | 127.000.0 | 3.35 | 425 |
TOTAL: | 1.803.39 | - | - | 2.060 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcante Júnior, R.G.; Vasconcelos Freitas, M.A.; da Silva, N.F.; de Azevedo Filho, F.R. Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies 2019, 12, 904. https://doi.org/10.3390/en12050904
Cavalcante Júnior RG, Vasconcelos Freitas MA, da Silva NF, de Azevedo Filho FR. Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies. 2019; 12(5):904. https://doi.org/10.3390/en12050904
Chicago/Turabian StyleCavalcante Júnior, Roberto Gomes, Marcos Aurélio Vasconcelos Freitas, Neilton Fidelis da Silva, and Franklin Rocha de Azevedo Filho. 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region" Energies 12, no. 5: 904. https://doi.org/10.3390/en12050904
APA StyleCavalcante Júnior, R. G., Vasconcelos Freitas, M. A., da Silva, N. F., & de Azevedo Filho, F. R. (2019). Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies, 12(5), 904. https://doi.org/10.3390/en12050904