Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort
Abstract
1. Introduction
2. Simulation Methods
2.1. Tested Models
2.2. Simulation Settings
2.3. Daylight Metrics
3. Results
3.1. Simulation Results
3.2. Glazing Sizing Guide
4. Discussion
5. Conclusions
- Increasing glazing proportion is an effective way to improve daylight in all types of models;
- Unexpected visual discomfort increases along with the increase of daylight quantity;
- Growth of daylight quantity and visual discomfort slows down with the increase of glazing areas;
- Shorter atrium buildings can draw more daylight for more spaces; and
- Round and square atrium types are superior to rectangular ones in drawing daylight to interior environments.
Author Contributions
Funding
Conflicts of Interest
References
- Boubekri, M. Daylighting Design: Planning Strategies and Best Practice Solution; Birkhauser Verlag GmbH: Basel, Switzerland, 2014. [Google Scholar]
- Edwards, L.; Torcellini, P. A Literature Review of the Effects of Natural Light on Building Occupants; National Renewable Energy Laboratory: Golden, CO, USA, 2002. [Google Scholar]
- U.S.G.B. Council. LEED Reference Guide for Building Design and Construction v4; U.S.G.B. Council: Washington, DC, USA, 2003; pp. 723–756. [Google Scholar]
- Samant, S.; Yang, F. Daylighting in atria: The effect of atrium geometry and reflectance distribution. Light. Res. Technol. 2007, 39, 147–157. [Google Scholar] [CrossRef]
- Wong, I.L. A review of daylighting design and implementation in buildings. Renew. Sustain. Energy Rev. 2017, 74, 959–968. [Google Scholar] [CrossRef]
- Andersen, M.; Kleindienst, S.; Yi, L.; Lee, J.; Bodart, M.; Cutler, B. An intuitive daylighting performance analysis and optimization approach. Build. Res. Inf. 2008, 36, 593–607. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M. Assessing the effectiveness of dynamic metrics in predicting daylight available and visual comfort in classrooms. Renew. Energy 2019, 134, 669–680. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. The ‘adaptive zone’—A concept for assessing discomfort glare throughout daylit spaces. Light. Res. Technol. 2012, 44, 149–170. [Google Scholar] [CrossRef]
- Galatioto, A.; Beccali, M. Aspects and issues of daylighting assessment: A review study. Renew. Sustain. Energy Rev. 2016, 66, 852–860. [Google Scholar] [CrossRef]
- Berardi, U.; Wang, W. Daylighting in an atrium-type high performance house. Build. Environ. 2014, 76, 92–104. [Google Scholar] [CrossRef]
- Sudan, M.; Mistrick, R.G.; Tiwari, G.N. Climate-based daylight modeling (CBDM) for an atrium: An. experimentally validated novel daylight performance. Solar Energy 2017, 158, 559–571. [Google Scholar] [CrossRef]
- Ghasemi, M.; Noroozi, M.; Kazemzadeh, M.; Roshan, M. The influence of well geometry on the daylight performance of atrium adjoining spaces: A parametric study. J. Build. Eng. 2015, 3, 39–47. [Google Scholar] [CrossRef]
- Mohsenin, M.; Hu, J. Assesing daylight performance in atrium buildings by using climate based daylight modeling. Solar Energy 2015, 119, 553–560. [Google Scholar] [CrossRef]
- Yi, R.; Shao, L.; Su, Y.; Riffat, S. Daylighting performance of atriums in subtropical climate. Int. J. Low-Carbon Technol. 2009, 4, 230–237. [Google Scholar] [CrossRef]
- Samant, S. A critical review of articles published on atrium geometry and surface reflectances on daylighting in an atrium and its adjoining spaces. Archit. Sci. Rev. 2010, 53, 145–156. [Google Scholar] [CrossRef]
- CIBSE. Lighting Guide 10: Daylighting—A Guide for Designers; CIBSE: London, UK, 2014. [Google Scholar]
- Reinhart, C.F.; Mardaljevic, J.; Rogers, Z. Dynamic daylight performance metrics for sustainable building design. Leukos 2006, 3, 7–31. [Google Scholar]
- Galasiu, A.D.; Reinhart, C.F. Current daylighting design practice: A survey. Build. Res. Inf. 2008, 36, 159–174. [Google Scholar] [CrossRef]
- Aghemo, C.; Pellegrino, A.; LoVerso, V.R.M. The approach to daylighting by scale models and sun and sky simulators: A case study for different shading systems. Build. Environ. 2008, 43, 917–927. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Liu, J.; Pei, J.; Cao, X.; Chen, Q.; Jiang, Y. Experimental and simulation study on the performance of daylighting in an industrial building and its energy saving potential. Energy Build. 2014, 73, 184–191. [Google Scholar] [CrossRef]
- Li, D.H.W.; Cheung, A.C.; Chow, S.K.; Lee, E.W. Study of daylight data and lighting energy savings for atrium corridors with lighting dimming controls. Energy Build. 2014, 72, 457–464. [Google Scholar] [CrossRef]
- Kazanasmaz, T. Fuzzy logic model to classify effectiveness of daylighting in an office with a movable blind system. Build. Environ. 2013, 69, 22–34. [Google Scholar] [CrossRef]
- Xu, Y.; Su, Y.H. Daylight availability assessment and its potential energy saving estimation—A literature review. Renew. Sustain. Energy Rev. 2015, 52, 494–503. [Google Scholar]
- Sun, Y.Y.; Shanks, K.; Baig, H.; Zhang, W.; Hao, X.; Li, Y.; He, B.; Wilson, R.; Liu, H.; Sundaram, S. Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs. Appl. Energy 2018, 231, 972–984. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Liang, R.; Wu, Y.; Wilson, R.; Rutherford, P. Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM). Appl. Energy 2017, 205, 951–963. [Google Scholar] [CrossRef]
- Reinhart, C.; Fitz, A. Findings from a survery on the current use of daylight simulations in building design. Energy Build. 2006, 38, 824–835. [Google Scholar] [CrossRef]
- E.D. Resources. Design Brief: Understanding Daylight Metrics. Available online: https://energydesignresources.com/media/1702/EDR_DesignBriefs_daylightmetrics.pdf (accessed on 10 January 2019).
- Costanzo, V.; Evola, G.; Marletta, L.; Pistone Nascone, F. Application of climate based daylight modelling to the refurbishment of a school building in Sicily. Sustainability 2018, 10, 2653. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wu, Y.P.; Wilson, P. A review of thermal and optical characterisation of complex window systems and their building performance prediction. Appl. Energy 2018, 222, 729–747. [Google Scholar] [CrossRef]
- Yun, P. Lighting Environment Simulation of Building; China Building Industry Press: Beijing, China, 2010. [Google Scholar]
- DIVA User Guide. Available online: http://diva4rhino.com/user-guide (accessed on 23 May 2018).
- Rhino Training. Available online: http://solemma.net/TrainingRhino.html (accessed on 23 May 2018).
- Kruisselbrink, T.; Dangol, R.; Rosemann, A. Photometric measurements of lighting quality: An overview. Build. Environ. 2018, 138, 42–52. [Google Scholar] [CrossRef]
- Carlucci, S.; Causone, F.; de Rosa, F.; Pagliano, L. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renew. Sustain. Energy Rev. 2015, 47, 1016–1033. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wu, Y.P.; Wilson, R. Analysis of the daylight performance of a glazing system with parallelslat transparent insulation material (PS-TIM). Energy Build. 2017, 139, 616–633. [Google Scholar] [CrossRef]
- Dubois, M.C.; Flodberg, K. Daylight utilisation in perimeter office rooms at high latitudes: Investigation by computer simulation. Light. Res. Technol. 2013, 45, 52–75. [Google Scholar] [CrossRef]
- EnergyPlus-Weather Data. Available online: https://energyplus.net/weather (accessed on 25 May 2018).
- I.D.M. Committee. IES LM-83 Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE); Illuminating Engineering Society: New York, NY, USA, 2012. [Google Scholar]
- Lindelöf, D.; Morel, N. Bayesian estimation of visual discomfort. Build. Res. Inf. 2007, 36, 83–96. [Google Scholar] [CrossRef]
Atrium Shape | Group No. | Height (m) | Roof-Glazing Size (Length/Width, m) | ||||
---|---|---|---|---|---|---|---|
Case 1 (20%) | Case 2 (40%) | Case 3 (60%) | Case 4 (80%) | Case 5 (100%) | |||
Rectangle | 1 | 24 | 4.47/22.36 | 6.32/31.62 | 7.75/38.73 | 8.94/44.72 | 10/50 |
2 | 32 | 4.47/22.36 | 6.32/31.62 | 7.75/38.73 | 8.94/44.72 | 10/50 | |
3 | 40 | 4.47/22.36 | 6.32/31.62 | 7.75/38.73 | 8.94/44.72 | 10/50 | |
4 | 48 | 4.47/22.36 | 6.32/31.62 | 7.75/38.73 | 8.94/44.72 | 10/50 | |
5 | 56 | 4.47/22.36 | 6.32/31.62 | 7.75/38.73 | 8.94/44.72 | 10/50 | |
Square | 6 | 24 | 10/10 | 14.14/14.14 | 17.32/17.32 | 20/20 | 22.36/22.36 |
7 | 32 | 10/10 | 14.14/14.14 | 17.32/17.32 | 20/20 | 22.36/22.36 | |
8 | 40 | 10/10 | 14.14/14.14 | 17.32/17.32 | 20/20 | 22.36/22.36 | |
9 | 48 | 10/10 | 14.14/14.14 | 17.32/17.32 | 20/20 | 22.36/22.36 | |
10 | 56 | 10/10 | 14.14/14.14 | 17.32/17.32 | 20/20 | 22.36/22.36 | |
Round | 11 | 24 | 5.6 | 8 | 9.8 | 11.3 | 12.6 |
12 | 32 | 5.6 | 8 | 9.8 | 11.3 | 12.6 | |
13 | 40 | 5.6 | 8 | 9.8 | 11.3 | 12.6 | |
14 | 48 | 5.6 | 8 | 9.8 | 11.3 | 12.6 | |
15 | 56 | 5.6 | 8 | 9.8 | 11.3 | 12.6 |
Atrium Shape | Group No. | Height (m) | sDA(300 lux, 50%) (% of space) | DAmax > 5% (% of space) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Case 1 (20%) | Case 2 (40%) | Case 3 (60%) | Case 4 (80%) | Case 5 (100%) | Case 1 (20%) | Case 2 (40%) | Case 3 (60%) | Case 4 (80%) | Case 5 (100%) | |||
Rectangle | 1 | 24 | 13 | 21 | 27 | 33 | 37 | 10 | 17 | 22 | 26 | 29 |
2 | 32 | 9 | 15 | 19 | 24 | 26 | 7 | 12 | 16 | 19 | 21 | |
3 | 40 | 8 | 12 | 15 | 19 | 21 | 6 | 10 | 13 | 15 | 17 | |
4 | 48 | 6 | 10 | 13 | 16 | 18 | 5 | 8 | 11 | 13 | 14 | |
5 | 56 | 5 | 10 | 13 | 14 | 15 | 4 | 8 | 11 | 11 | 12 | |
Square | 6 | 24 | 21 | 36 | 46 | 52 | 55 | 13 | 25 | 33 | 39 | 43 |
7 | 32 | 12 | 28 | 36 | 41 | 44 | 9 | 19 | 25 | 31 | 34 | |
8 | 40 | 10 | 20 | 30 | 34 | 36 | 7 | 14 | 20 | 25 | 28 | |
9 | 48 | 8 | 16 | 22 | 26 | 28 | 6 | 12 | 16 | 20 | 22 | |
10 | 56 | 7 | 14 | 19 | 22 | 24 | 5 | 10 | 14 | 17 | 19 | |
Round | 11 | 24 | 23 | 38 | 49 | 54 | 57 | 13 | 27 | 35 | 41 | 45 |
12 | 32 | 13 | 30 | 40 | 44 | 47 | 8 | 20 | 28 | 33 | 36 | |
13 | 40 | 11 | 20 | 33 | 37 | 39 | 7 | 15 | 22 | 26 | 29 | |
14 | 48 | 9 | 18 | 25 | 30 | 32 | 6 | 13 | 25 | 21 | 24 | |
15 | 56 | 8 | 15 | 21 | 24 | 26 | 5 | 11 | 15 | 18 | 20 |
Height | Rectangle | Square | Round |
---|---|---|---|
24 m | |||
32 m | |||
40 m | |||
48 m | |||
56 m |
Atrium Shape | H = 24 m | H = 32 m | H = 40 m | H = 48 m | H = 56 m |
---|---|---|---|---|---|
Rectangle | 100% | 100% | 100% | 100% | 100% |
Square | 80% | 75% | 78% | 80% | 80% |
Round | 78% | 75% | 80% | 100% | 80% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ban, Q.; Chen, X.; Yao, J. Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort. Energies 2019, 12, 701. https://doi.org/10.3390/en12040701
Li J, Ban Q, Chen X, Yao J. Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort. Energies. 2019; 12(4):701. https://doi.org/10.3390/en12040701
Chicago/Turabian StyleLi, Jie, Qichao Ban, Xueming (Jimmy) Chen, and Jiawei Yao. 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort" Energies 12, no. 4: 701. https://doi.org/10.3390/en12040701
APA StyleLi, J., Ban, Q., Chen, X., & Yao, J. (2019). Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort. Energies, 12(4), 701. https://doi.org/10.3390/en12040701