Insights into Multifractal Characterization of Coals by Mercury Intrusion Porosimetry
Abstract
:1. Introduction
2. Samples and Experiments
3. Multifractal Analysis
4. Results and Discussion
4.1. Pore Structures by MIP and LTNA Measurement
4.2. Coal Matrix Compressibility Coefficient Calculation.
4.3. Mercury Intrusion Porosimetry Pore Size Distributions Correction
4.4. Multifractal Characteristics of the Corrected Pore Size Distributions
4.5. Petrophysical Characteristics and Multifractal Parameters
5. Conclusions
- Coal matrix compressibility has an evident impact on MIP data when the mercury intrusion pressure >24.75 MPa. Combined with LTNA data, the MIP PSDs ranging between 3 and 25 nm was corrected. The corrected mercury intrusion volume decreased by 35.51–96.65%. The matrix compressibility coefficients vary from 0.89 × 10−10 m2/N to 2.47 × 10−10 m2/N, following a cubic polynomial relationship with the increasing Ro,m.
- The multifractal analysis of corrected PSDs, which were determined using a combination of MIP and LTNA data, was conducted. The multifractal spectrum shows a typical concave-down parabola shape. On the left of the parabola, f (α) increases with the increase of α (q). In contrast, f (α) decreases with the increase of α (q) on the right of parabola.
- When q < 0, the mass exponent spectra emerges, showing an obvious increasing trend with the increase in q. In contrast, there is a slight increase when q > 0. The multifractal spectra generalized dimensions and mass exponent spectra indicate the typical multifractal characteristics of corrected PSDs for the coals.
- Multifractal parameter Dmin shows a negative relationship with inertinite contents and mercury intrusion saturation, whereas it shows a positive relationship with the vitrinite contents. Dmax shows a negative relationship with moisture and ash content, and a “U-shaped” trend with efficiency of mercury withdrawal.
Author Contributions
Funding
Conflicts of Interest
References
- Moore, T.A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Cai, Y.D.; Liu, D.M.; Pan, Z.J.; Yao, Y.B.; Li, J.Q.; Qiu, Y.K. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Cai, Y.D.; Liu, D.M.; Yao, Y.B.; Li, J.Q.; Qiu, Y.K. Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin, North China. Int. J. Coal Geol. 2011, 88, 101–112. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Characterizations of full-scale pore size distribution, porosity and permeability of coals: A novel methodology by nuclear magnetic resonance and fractal analysis. Int. J. Coal Geol. 2018, 196, 148–158. [Google Scholar] [CrossRef]
- Liu, X.F.; Nie, B.S. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- Cai, Y.D.; Liu, D.M.; Mathews, J.P.; Pan, Z.J.; Elsworth, D.; Yao, Y.B.; Li, J.Q.; Guo, X.Q. Permeability evolution in fractured coal—Combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques. Int. J. Coal Geol. 2014, 122, 91–104. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Che, Y.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int. J. Coal Geol. 2009, 80, 113–123. [Google Scholar] [CrossRef]
- Golab, A.; Ward, C.R.; Permana, A.; Lennox, P.; Botha, P. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence. Int. J. Coal Geol. 2013, 113, 97–108. [Google Scholar] [CrossRef]
- Pan, J.N.; Zhu, H.T.; Hou, Q.L.; Wang, H.C.; Wang, S. Macromolecular and pore structures of Chinese tectonically deformed coals studied by atomic force microscopy. Fuel 2015, 139, 94–101. [Google Scholar] [CrossRef]
- Wang, S.Q.; Liu, S.M.; Sun, Y.B.; Jiang, D.; Zhang, X.M. Investigation of coal components of Late Permian different ranks bark coal using AFM and Micro-FTIR. Fuel 2017, 187, 51–57. [Google Scholar] [CrossRef]
- Wang, G.C.; Ju, Y.W.; Yan, Z.F.; Li, Q.G. Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan–Huaibei Coalfield in China. Mar. Pet. Geol. 2015, 62, 1–13. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Shao, P.; Wu, J.H. Matrix compression and multifractal characterization for tectonically deformed coals by Hg porosimetry. Fuel 2018, 211, 661–675. [Google Scholar]
- Yao, Y.B.; Liu, D.M.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Chen, Y.L.; Qin, Y.; Wei, C.T.; Huang, L.L.; Shi, Q.M.; Wu, C.F.; Zhang, X.Y. Porosity changes in progressively pulverized anthracite subsamples: Implications for the study of closed pore distribution in coals. Fuel 2018, 225, 612–622. [Google Scholar] [CrossRef]
- Pajdak, A.; Kudasik, M.; Skoczylas, N.; Wierzbicki, M.; Teixeira Palla Braga, L. Studies on the competitive sorption of CO2 and CH4 on hard coal. Int. J. Greenh. Gas Con. 2019, 90, 102798. [Google Scholar] [CrossRef]
- Kudasik, M.; Skoczylas, N.; Pajdak, A. The repeatability of sorption processes occurring in the coal-methane system during multiple measurement series. Energies 2017, 10, 661. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.B.; Liu, J.; Liu, D.M.; Chen, J.Y.; Pan, Z.J. A new application of NMR in characterization of multiphase methane and adsorption capacity of shale. Int. J. Coal Geol. 2019, 201, 76–85. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Che, Y.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 2010, 89, 1371–1380. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Nuclear magnetic resonance surface relaxivity of coals. Int. J. Coal Geol. 2019, 205, 1–13. [Google Scholar] [CrossRef]
- Friesen, W.I.; Mikula, R.J. Mercury porosimetry of coals—Pore volume distribution and compressibility. Fuel. 1988, 67, 1516–1520. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel 2012, 95, 152–158. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.Q.; Rudolph, V. Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry. Part. Part. Syst. Char. 1999, 16, 25–31. [Google Scholar] [CrossRef]
- Guo, X.Q.; Yao, Y.B.; Liu, D.M. Characteristics of coal matrix compressibility: An investigation by mercury intrusion porosimetry. Energy Fuels 2014, 28, 3673–3678. [Google Scholar] [CrossRef]
- Cai, Y.D.; Li, Q.; Liu, D.M.; Zhou, Y.F.; Lv, D. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. Int. J. Coal Geol. 2018, 200, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Co.: New York, NY, USA, 1983; p. 495. [Google Scholar]
- Pape, H.; Tillich, J.E.; Holz, M. Pore geometry of sandstone derived from pulsed field gradient NMR. J. Appl. Geophys. 2006, 58, 232–252. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, Y.B.; Li, X.; Zheng, J.L.; Dong, J.B. Scaling invariant effects on the permeability of fractal porous media. Transp. Porous Media 2015, 109, 433–453. [Google Scholar] [CrossRef]
- Chen, X.J.; Yao, G.Q.; Cai, J.C.; Huang, Y.T.; Yuan, X.Q. Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images. J. Nat. Gas Sci. Eng. 2017, 48, 145–156. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhu, G.P.; Dong, Y.H.; Danesh, N.N.; Chen, Z.W.; Zhang, T. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores. Fuel 2017, 210, 217–226. [Google Scholar] [CrossRef]
- Krohn, C.E.; Thompson, A.H. Fractal sandstone pores: Automated measurements using scanning-electron-microscope images. Phys. Rev. B 1986, 33, 6366–6374. [Google Scholar] [CrossRef]
- Peng, R.D.; Yang, Y.C.; Ju, Y.; Mao, L.T.; Yang, Y.M. Computation of fractal dimension of rock pores based on gray CT images. Chin. Sci. Bull. 2011, 56, 3346–3357. [Google Scholar] [CrossRef] [Green Version]
- Gould, D.J.; Vadakkan, T.J.; Poché, R.A.; Dickinson, M.E. Multifractal and lacunarity analysis of microvascular morphology and remodeling. Microcirculation 2011, 18, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.M.; Fan, Y.R.; Zhu, X.J.; Chen, Y.G.; Li, R.Z. Determination of nuclear magnetic resonance T2 cutoff value based on multifractal theory-An application in sandstone with complex pore structure. Geophysics 2015, 80, 11–21. [Google Scholar] [CrossRef]
- Ge, X.M.; Fan, Y.R.; Li, J.T.; Zahid, M.A. Pore structure characterization and classification using multifractal theory-An application in Santanghu Basin of western China. J. Pet. Sci. Eng. 2015, 127, 297–304. [Google Scholar] [CrossRef]
- Bu, H.L.; Ju, Y.W.; Tang, J.Q.; Wang, G.C.; Li, X.S. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China. J. Nat. Gas Sci. Eng. 2015, 24, 166–177. [Google Scholar] [CrossRef]
- Zhao, P.D.; Wang, X.X.; Cai, J.C.; Luo, M.; Zhang, J.; Liu, Y.M.; Rabiei, M.; Li, C.C. Multifractal analysis of pore structure of Middle Bakken formation using low temperature N2 adsorption and NMR measurements. J. Pet. Sci. Eng. 2019, 176, 312–320. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y.; Li, X.W. Nuclear magnetic resonance T2 cutoffs of coals: A novel method by multifractal analysis. Fuel 2019, 241, 715–724. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.F.; Song, X.X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 2015, 145, 138–152. [Google Scholar] [CrossRef]
- Halsey, T.C.; Hensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Scaling structure of the surface layer of diffusion-limited aggregates. Phys. Rev. 1986, 33, 1141–1151. [Google Scholar] [CrossRef]
- Shao, P.; Wang, X.; Song, Y.; Li, Y. Study on the characteristics of matrix compressibility and its influence factors for different rank coals. J. Nat. Gas Sci. Eng. 2018, 56, 93–106. [Google Scholar] [CrossRef]
- Debelak, K.A.; Schrodt, J.T. Comparison of pore structure in Kentucky coals by mercury penetration and carbon dioxide adsorption. Fuel 1979, 58, 732–736. [Google Scholar] [CrossRef]
- Xu, L.; Liu, C.; Xian, X.; Zhang, D. Compressibility of coal matter and coal pore. Colloids Surf. A Physicochem. Eng. Aspect. 1999, 157, 219–222. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Tang, D.Z.; Tang, S.H.; Huang, W.H.; Liu, Z.H.; Che, Y. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Comput. Geosci. 2009, 35, 1159–1166. [Google Scholar] [CrossRef]
- Caniego, J.; Martin, M.A.; San, J.F. Singularity features of pore-size distribution: Singularity strength analysis and entropy spectrum. Fractals 2001, 9, 305–316. [Google Scholar] [CrossRef]
- Tarquis, A.; Giménez, D.; Saá, A.; Díaz, M.C.; Gascó, J.M. Scaling and multiscaling of soil pore systems determined by image analysis. In Scaling Methods in Soil Physics; Pachepsky, Y., Radcliffe, D.E., Magdi Selim, H., Eds.; CRC Press: Boca Raton, FL, USA, 2003; p. 434. [Google Scholar]
Sample No. | MIP Results | LTNA Results | |||||||
---|---|---|---|---|---|---|---|---|---|
True Density (g/cm3) | IMS (%) | EMW (%) | Kc × 10−10 (m2/N) | ε (×10−4) | Type of Curve | BJH Pore Volume (10−3 cm3/g) | Pore Volume in 3–25 nm (10−3 cm3/g) | Type of Curve | |
L1 | 1.41 | 30.10 | 84.95 | 2.47 | 1.00 | II | 7.27 | 1.41 | I |
L2 | 1.21 | 34.92 | 23.49 | 2.23 | 2.00 | I | 16.11 | 2.09 | III |
L3 | 1.36 | 36.53 | 73.11 | 2.17 | 0.80 | II | 9.10 | 0.68 | I |
L4 | 1.27 | 43.67 | 71.56 | 1.83 | 2.00 | I | 1.25 | 1.01 | III |
L5 | 1.43 | 31.39 | 77.91 | 1.16 | 0.90 | II | 8.31 | 3.42 | I |
M1 | 1.36 | 44.35 | 82.16 | 0.89 | 0.70 | II | 1.52 | 0.77 | III |
M2 | 1.43 | 39.17 | 66.95 | 1.25 | 0.60 | I | 1.08 | 0.16 | II |
M3 | 1.70 | 9.74 | 37.96 | 1.12 | 0.50 | III | 2.73 | 0.44 | III |
M4 | 1.37 | 38.62 | 41.86 | 1.21 | 0.80 | I | 16.78 | 3.16 | I |
M5 | 1.43 | 33.26 | 81.45 | 1.05 | 0.80 | II | 2.27 | 0.37 | III |
H1 | 1.32 | 37.05 | 69.82 | 1.09 | 1.00 | II | 2.17 | 0.39 | I |
H2 | 1.38 | 37.76 | 31.72 | 1.72 | 0.90 | I | 11.67 | 4.56 | I |
H3 | 1.54 | 28.34 | 82.52 | 1.78 | 0.70 | III | 3.81 | 1.14 | III |
H4 | 1.36 | 32.35 | 57.11 | 1.57 | 0.90 | I | 1.35 | 0.40 | I |
H5 | 1.38 | 39.20 | 78.93 | 1.40 | 0.90 | II | 10.74 | 3.22 | II |
Sample No. | D−10 | D0 | D1 | D2 | D10 | Δα |
---|---|---|---|---|---|---|
L1 | 1.548 | 1.000 | 0.924 | 0.878 | 0.762 | 1.002 |
L2 | 1.628 | 1.000 | 0.905 | 0.837 | 0.685 | 1.169 |
L3 | 1.379 | 1.000 | 0.879 | 0.807 | 0.700 | 0.866 |
L4 | 1.571 | 1.000 | 0.918 | 0.883 | 0.818 | 0.952 |
L5 | 1.457 | 1.000 | 0.828 | 0.739 | 0.626 | 1.032 |
M1 | 1.423 | 1.000 | 0.852 | 0.768 | 0.661 | 0.941 |
M2 | 1.358 | 1.000 | 0.919 | 0.859 | 0.733 | 0.816 |
M3 | 1.421 | 1.000 | 0.943 | 0.909 | 0.800 | 0.825 |
M4 | 1.537 | 1.000 | 0.892 | 0.819 | 0.686 | 1.068 |
M5 | 1.414 | 1.000 | 0.858 | 0.772 | 0.645 | 0.971 |
H1 | 1.362 | 1.000 | 0.888 | 0.813 | 0.693 | 0.858 |
H2 | 1.565 | 1.000 | 0.813 | 0.734 | 0.634 | 1.127 |
H3 | 1.468 | 1.000 | 0.827 | 0.740 | 0.640 | 1.020 |
H4 | 1.825 | 1.000 | 0.930 | 0.891 | 0.790 | 1.279 |
H5 | 1.547 | 1.000 | 0.867 | 0.793 | 0.688 | 1.067 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Yao, Y.; Zhang, S.; Liu, Y.; Yang, J. Insights into Multifractal Characterization of Coals by Mercury Intrusion Porosimetry. Energies 2019, 12, 4743. https://doi.org/10.3390/en12244743
Zheng S, Yao Y, Zhang S, Liu Y, Yang J. Insights into Multifractal Characterization of Coals by Mercury Intrusion Porosimetry. Energies. 2019; 12(24):4743. https://doi.org/10.3390/en12244743
Chicago/Turabian StyleZheng, Sijian, Yanbin Yao, Shasha Zhang, Yong Liu, and Jinhui Yang. 2019. "Insights into Multifractal Characterization of Coals by Mercury Intrusion Porosimetry" Energies 12, no. 24: 4743. https://doi.org/10.3390/en12244743
APA StyleZheng, S., Yao, Y., Zhang, S., Liu, Y., & Yang, J. (2019). Insights into Multifractal Characterization of Coals by Mercury Intrusion Porosimetry. Energies, 12(24), 4743. https://doi.org/10.3390/en12244743