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Abstract: Mercury intrusion porosimetry (MIP) as a practical and effective measurement has
been widely used in characterizing the pore size distribution (PSD) for unconventional reservoirs
(e.g., coals and shales). However, in the process of MIP experiments, the high mercury intrusion
pressure may cause matrix compressibility and result in inaccurate estimations of PSD. To get
a deeper understanding of the variability and heterogeneity characteristics of the actual PSD in
coals, this study firstly corrected the high mercury intrusion pressure data in combination with
low-temperature N2 adsorption (LTNA) data. The results show that the matrix compressibility was
obvious under the pressure over 24.75 MPa, and the calculated matrix compressibility coefficients of
bituminous and anthracite coals range from 0.82 to 2.47 × 10−10 m2/N. Then, multifractal analysis
was introduced to evaluate the heterogeneity characteristics of coals based on the corrected MIP
data. The multifractal dimension Dmin is positively correlated with vitrinite content, but negatively
correlated with inertinite content and mercury intrusion saturation. The multifractal dimension Dmax

shows negative relationships with moisture and ash content, and it also emerges as a “U-shaped”
trend with efficiency of mercury withdrawal. It is concluded that multifractal analysis can be served
as a practical method not only for evaluating the heterogeneity of coal PSDs, but also for other
unconventional reservoirs (e.g., shale and tight sandstone).

Keywords: coalbed methane (CBM); multifractal analysis; pore size distribution (PSD);
low-temperature N2 adsorption (LTNA); heterogeneity

1. Introduction

The pore size distribution (PSD) properties of coals play an important role in characterizing
coal reservoirs since it has significant effects on the exploration coalbed methane (CBM) [1–4].
To simplify the study, we define the “pores” as all pore void types in the coal, including fractures
(large extending length but small pore aperture), macropore (pore diameter >1000 nm), mesopore
(100–1000 nm), transitional pore (10–100 nm) and micropore (<10 nm), as stated by Hodot in
1966. In recent decades, various constantly updated methods have been applied to evaluate the
coal PSD characteristics, including direct observational methods and indirectly inferred methods.
Direct observation methods are, for example, scanning electron microscopy (SEM) [5,6], X-ray
computerized tomography (X-CT) [7,8] and atomic force microscope (AFM) [9,10], which can be used
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to characterize the two- or three-dimensional distribution of coal PSDs. Indirectly inferred methods
include mercury intrusion porosimetry (MIP) [11,12], gas adsorption (N2 and CO2) [13–16] and nuclear
magnetic resonance (NMR) [17–19]. Among of these methods, MIP measurement has been proven as
an effective method to estimate the PSD of coals. However, in the process of MIP experiments, the high
mercury intrusion pressure may cause coal matrix compressibility and result in inaccurate estimation
of coal PSDs [20,21]. Thus, before characterizing coal PSDs only by MIP measurement, the effects of
matrix compressibility in a high mercury intrusion pressure range ought to be considered first.

Previous studies have shown that it is a feasible method to evaluate coal matrix compressibility
by combining low-temperature N2 adsorption (LTNA) and MIP data [22–24]. By using this method,
Guo et al. [23] calculated the coal matrix compressibility coefficients and found it emerges as a
“U-shaped” trend with coal ranks. Cai et al. [24] found the coal matrix compressibility coefficients are
in the range of 0.24−13.56 × 10−10 m2/N, and then they revealed the influence factors of compressibility
in differently ranked coals.

The PSD of the porous mediums are commonly not homogeneous distributed in a
three-dimensional space, which makes it hard to describe its heterogeneity characteristics by using
conventional Euclidean geometry. Fractal analysis, proposed by Mandelbrot [25], has been proven
as an important and effective tool for evaluating the physical-geometrical properties of spatially
non-uniform system [26–29]. The sporadic distribution of objects can be described by fractal dimension
(D), which can be expressed as

D = lim
δ→0
−

log N(δ)

log δ
, (1)

where δ is the size of the box; and N (δ) is the number of boxes with the same size of δ.
Previous studies have shown that porous rocks are usually with good self-similar characteristics,

which can quantitatively describe the complexity of pore structures by fractal analysis. For example,
Krohn and Thompson [30] analyzed the fractal characteristics of sandstones by SEM technique and
found that the fractal dimension shows a positive relationship with porosity. Yao et al. [13] conducted
fractal analysis by using LTNA measurements and revealed that less heterogeneity in pore structures
indicates a higher methane adsorption capacity of coals. Peng et al. [31] found that fractal analysis
can be used to estimate the rock pore radius based on the CT image fractal results. Zheng et al. [4]
presented a novel method for characterization of full-scale PSD, porosity and permeability of coals by
combining an NMR technique and fractal analysis.

However, studies have shown that the conventional single fractal method has its drawbacks,
because it is incapable to describe the local portion heterogeneity distribution of an object [32–35].
Multifractal analysis is regarded as an extension of single fractal theory, which can overcome the
limitations of the single fractal theory and characterize the variability and heterogeneity in more detail.
Ge et al. [34] investigated the multifractal distribution of pore space and developed a valid method
for PSD classification for tight reservoirs. Zhao et al. [29] combined multifractal analysis with NMR
technique to investigate the heterogeneity distribution of tight sandstone reservoirs. Zhao et al. [36]
revealed the multifractal characterization of PSDs for Middle Bakken by using LTNA and NMR
measurements. Zheng et al. [37] presented a novel method to determine NMR T2 cutoff values by
applying multifractal analysis for coals. By combining MIP measurement and multifractal analysis,
Li et al. [38] investigated the variability and heterogeneity of tectonically deformed coals with Ro, m

(mean maximum vitrinite reflectance) in the range of 1.72% to 1.86%, and then found that multifractal
analysis can be served as a useful method for describing the internal heterogeneity characteristics
of PSD. However, the coal samples studied in Li et al. [38] are only low volatile bituminous coal,
which limit the application of multifractal analysis in sub-bituminous and anthracite coal.

In this study, we performed MIP and LTNA experiments on 15 different coal ranks collected
from the southern Junngar basin and Qinshui basin. Combining MIP and LTNA data, the coal
matrix compressibility coefficients were determined first. Then, based on the determined coal matrix
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compressibility coefficients, the PSDs from MIP measurement were corrected. Finally, multifractal
analysis was applied in describing the heterogeneity characterizations for the corrected coal PSDs.

2. Samples and Experiments

Fifteen coal samples were taken from the underground mines in the southern Junggar basin and
Qinshui basin, and then quickly carried to the lab for basic petrophysical analysis, as well as MIP
and LTNA analysis. The analysis results of vitrinite reflectance, maceral composition and proximate
analysis are given in our previous studies [19].

MIP measurements were conducted with the Micromeritics Autopore 9520 instrument, that can
automatically record mercury intrusion pressure, pore size and mercury intrusion volume. For sample
preparation, based on the Standard SY/T 5346-2005, the coal sample size required was approximately
2 mm. The mercury intrusion pressure with an interval of 0.012–206.825 MPa corresponded to a pore
size of 50–0.03 µm.

LTNA analyses were performed using the Micromeritics ASAP 2020N. For sample preparation,
the coal samples were crushed into the size of 60–80 mesh. Then, the coal powders were dried at
110 ◦C for 12 h in a drying oven to remove moisture. After drying, all coal powders were evacuated for
complete outgassing in a high vacuum system within 5 h. Lastly, the coal powders for quantitative
adsorption isotherm analyzing were measured at−196 ◦C with a relative pressure of of 0.011–0.995 MPa.

3. Multifractal Analysis

Different to single fractal analysis, multifractal analysis cannot describe self-similarity by a single
fractal dimension, but rather by a continuous function (i.e., multifractal spectrum). More detailed
information about the principle of multifractal analysis can be found in previous studies [12,33,35,38].
Here, we just made a brief introduction to multifractal analysis by using the box-counting method.
Based on the cardinal theory of the box-counting method, a cubic box with a size of δ × δ can be used
to cover the pore volume of objects. As a result, the objects can be divided into N(δ) boxes. Thus,
the probability mass distribution Pi (δ) in the ith box can be defined as

Pi(δ) =
Ni(δ)∑N(δ)

i=1 Ni(δ)
, (2)

where Ni (δ) is the pore volumes in the ith box.
For a target object with a multifractal property, the probability mass distribution Pi (δ) follows a

power-law equation with scale δ:
Pi(δ) ∝ δ

αi (3)

where αi is the singularity strength in the ith box.
Possibly, there are many boxes that have the same value of α. Here, the number of boxes having a

singularity strength range of α + da was represented as Nα (δ), then:

Nα(δ) ∝ δ
− f (α) (4)

where f (α) is the multifractal spectrum and can achieve the maximum value when

d f (α(q))
dα(q)

= 0 (5)

where q is the moment order and can be any real number in the range of [−∞, +∞].
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The partition function for the moment order q was denoted as X (q,δ). Then:

X(q, δ) =
Ni∑

i=1

Pq
i (δ) ∝ ε

−(q−1)Dq (6)

where Dq is the multifractal dimension for the moment order q. When q , 1, Dq can be expressed as

Dq =
1

q− 1
lim
δ→0

log
∑N(δ)

i=1 Pq
i (δ)

log δ
(7)

When q = 1, Equation (7) does not make mathematical sense. D1 can be determined by
L’Hôpital rules:

D1 = lim
δ→0

∑N(δ)
i=1 Pi(δ) log Pi(δ)

log δ
(8)

The mass exponent τ (q) which related to multifractal dimension Dq [39]:

(q) = (1− q)Dq (9)

The singularity strength α (q) and multifractal spectrum f (α) can be evaluated by the
Legendre transformation:

α(q) =
dτ(q)

dq
(10)

f (α) = qα(q) − τ(q) (11)

The singularity strength range ∆α, commonly used as an indicator to describe the heterogeneity
characteristic of subjects, is defined as

∆α = αmax − αmin (12)

where αmax and αmin are the maximum and minimum values of the singularity strength, respectively.

4. Results and Discussion

4.1. Pore Structures by MIP and LTNA Measurement

As shown in Figure 1 and Table 1, the mercury intrusion and extrusion curves of the MIP
measurements for the selected coal samples are classified into three types. For type I, represented by
sample L2, there is a large hysteresis loop between the intrusion and extrusion curves, indicating good
development of fractures and macro pores. For type II, represented by sample M5, the intruded
mercury increases rapidly when the intrusion pressure >10 MPa, which means good connectivity of
the macro pores but poor connectivity of the micropores. For type III, represented by sample H3,
there is low intruded mercury saturation, indicating the connectivity between the macro pores and the
micropores is very poor.

Figure 2 and Table 1 show the three typical types of nitrogen adsorption/desorption curves at
77 K according to the IUPAC classification. For type I, represented by sample L2, an evident hysteresis
loop occurring at a relative pressure range of 0.4–1 MPa, indicating that the ink bottle-like pores
are well developed in Type I. For Type II, represented by sample M5, the adsorption curve shows a
slight increase when the relative pressure is less than 0.8, while it emerged that there is a significant
increase when the relative pressure approaches to 1. The desorption curve is similar to the adsorption
curve, indicating the pore morphology is plate-like pores. For Type III, represented by sample H3,
the adsorption curve looks like type II. While for the desorption curve, there is a significant hysteresis
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loop occurring at a relative pressure range of 0.7–1 MPa. This indicates the pore morphology of type
III is cylinder-like pores.
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Table 1. Mercury intrusion porosimetry (MIP) and low-temperature N2 adsorption (LTNA) results for
the selected coals.

Sample
No.

MIP Results LTNA Results

True Density
(g/cm3)

IMS
(%)

EMW
(%)

Kc × 10−10

(m2/N)
ε

(×10−4)
Type of
Curve

BJH Pore Volume
(10−3 cm3/g)

Pore Volume in 3–25
nm (10−3 cm3/g)

Type of
Curve

L1 1.41 30.10 84.95 2.47 1.00 II 7.27 1.41 I
L2 1.21 34.92 23.49 2.23 2.00 I 16.11 2.09 III
L3 1.36 36.53 73.11 2.17 0.80 II 9.10 0.68 I
L4 1.27 43.67 71.56 1.83 2.00 I 1.25 1.01 III
L5 1.43 31.39 77.91 1.16 0.90 II 8.31 3.42 I
M1 1.36 44.35 82.16 0.89 0.70 II 1.52 0.77 III
M2 1.43 39.17 66.95 1.25 0.60 I 1.08 0.16 II
M3 1.70 9.74 37.96 1.12 0.50 III 2.73 0.44 III
M4 1.37 38.62 41.86 1.21 0.80 I 16.78 3.16 I
M5 1.43 33.26 81.45 1.05 0.80 II 2.27 0.37 III
H1 1.32 37.05 69.82 1.09 1.00 II 2.17 0.39 I
H2 1.38 37.76 31.72 1.72 0.90 I 11.67 4.56 I
H3 1.54 28.34 82.52 1.78 0.70 III 3.81 1.14 III
H4 1.36 32.35 57.11 1.57 0.90 I 1.35 0.40 I
H5 1.38 39.20 78.93 1.40 0.90 II 10.74 3.22 II

Notes: IMS—injection of mercury saturation; EMW—efficiency of mercury withdrawal.

4.2. Coal Matrix Compressibility Coefficient Calculation.

Previous studies have shown that the coal matrix compressibility can have a significant influence
on the results of MIP experiments when the mercury intrusion pressure is > 20 MPa [22,24]. In this
study, as shown in Figure 3, it can be found that the cumulative mercury intrusion volume and mercury
intrusion pressure shows a good linear relationship when the mercury intrusion pressure is higher
than 24.75 MPa, and the correlation coefficients are higher than 0.98 for all selected coal samples.
This means the coal matrix compressibility effect begins at a mercury intrusion pressure of 24.75 MPa.
In case of ignoring the compressibility effects of mercury, the coal matrix compressibility coefficient
(Kc) can be expressed as

Kc =
dVc

VcdP
(13)

where dVc/dP represents the coal matrix volume changes as a function of pressure, and Vc is the coal
matrix volume that can be defined as

Vc =
1
ρ
−VB (14)

where ρ is the true density of coals in g/mL, and VB is the pore volume evaluated using the BJH
theoretical model by LTNA data in mL/g.

In the process of MIP measurement, the detected changes of the mercury intrusion volume (∆Vd)
is commonly due to the changes of the pore filling volume (∆Vp) and solid compression volume (∆Vc),
which follows a function of

∆Vd = ∆Vp + ∆Vc (15)

In this study, the high mercury intrusion pressure ranges from 24.75 MPa to 199.94 MPa
(corresponding to a pore radius of 25 nm to 3 nm based on the Washburn equation). There is a
good linear relationship between the cumulative mercury intrusion volume and mercury intrusion
pressure (Figure 3). Thus, ∆Vd/∆P can be a constant ε in the mercury intrusion pressure range of
24.75–199.94 MPa, and the calculated ε is listed in Table 1. In this case, ∆Vc/∆P can be redefined as

∆Vc

∆P
=

∆Vd
∆P
−

∆Vp

∆P
= ε−

∑25 nm
3 nm ∆Vp

∆P
(16)

where
25 nm∑
3 nm

∆Vp is the sum of pore volumes in the pore radius of 3–25 nm, which is calculated by

LTNA measurements.
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Assuming ∆Vc/∆P is independent of mercury intrusion pressure, in this case, dVc/dP can be
replaced by ∆Vc/∆P. Hence, the matrix compressibility coefficient can be calculated by combining
Equations (13) and (16). In this study, the calculated matrix compressibility coefficient for the selected
coal samples is in the range of 0.89–2.47 × 10−10 m2/N (Table 1), averaging at 1.21 × 10−10 m2/N, which
is consistent with previous researches, such as Cai et al. [2] (1.55–2.37 × 10−10 m2/N), Guo et al. [23]
(0.35−2.91 × 10−10 m2/N), and Shao et al. [40] (1.13–3.06 × 10−10 m2/N).
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Figure 4 displays the cross plot of the coal matrix compressibility coefficients vs. Ro,m. We found
that when Ro,m is less than 1.3%, the coal matrix compressibility coefficients decreases rapidly
with increasing Ro,m. It is possible because the mechanical compaction and degasification effect
increases with an increase in coalification degree. When Ro,m is in the range of 1.3–2.5%, the coal
matrix compressibility shows an increased trend with an increase in Ro,m. Because the internal
specific surface area of the micropores increases rapidly with the continued increase in coalification
degree, the coals become more sensitive to stress. When the Ro,m is more than 2.5%, the coal matrix
compressibility coefficients increases with increasing Ro,m, since the condensed humus complex and
aromatic rings increase [24].
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4.3. Mercury Intrusion Porosimetry Pore Size Distributions Correction

Previous studies have shown the method to correct the original PSDs of MIP in combination with
LTNA data [20,41,42]. As discussed in Section 4.2, the coal matrix compression begins at the mercury
intrusion pressure of 24.75 MPa. Thus, in this study, the pressure range for the MIP data correction is
24.75–199.94 MPa. The pore volume in this stage can be redefined as

∆Vpi = ∆Vd(pi) − ∆Vm(pi) = Vd(pi) −Vd(p0) − kcVc(pi)(pi − p0) (17)

where ∆Vpi, ∆Vd(pi) and ∆Vm(pi) are the changes of filling pore volume, detected mercury volume,
and matrix compression volume when pressure increases from p0 to pi, respectively; Vd(pi) represents
the detected mercury intrusion volume at a pressure of pi; and Vc(pi) is the coal matrix compressed
volume, which can be defined as

Vc(pi) = Vc −
dVc

dP
(pi − p0) (18)

Combining Equations (17) and (18), the corrected mercury intrusion data and PSDs from MIP
measurements for all selected coal samples are shown in Figure 5. Compared with the uncorrected
mercury intrusion volume in a pore radius of 3–25 nm, the corrected mercury intrusion volume decreased
by 35.51–96.65%. This indicates that the matrix compressibility has an evident impact on coal PSDs
estimation. By using MIP measurement, previous studies evaluated the heterogeneity characteristics of
coals only through the original PSDs data and single fractal method [43,44], rather than the corrected
PSDs data and multifractal analysis. This may result in inaccuracy estimation of the variability and
heterogeneity of coals. In the next section, based on the corrected PSDs from MIP measurement,
the heterogeneity characteristics of coals were investigated by the introduced multifractal analysis.
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Figure 5. Comparisons between the uncorrected and corrected pore size distributions (PSDs) of the
coals from MIP measurements. (a) sample L1; (b) sample L2; (c) sample L3; (d) sample L4; (e) sample L5;
(f) sample M1; (g) sample M2; (h) sample M3; (i) sample M4; (j) sample M5; (k) sample H1; (m) sample
H2; (n) sample H3; (o) sample H4; (p) sample H5.
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4.4. Multifractal Characteristics of the Corrected Pore Size Distributions

Figure 6 shows the double log relationship between X (q, ε) and ε for the presentative sample
L2. We find that the log X (q, ε) shows a great linear relationship with log (ε), with the correlation
coefficients higher than 0.99 for all q values. This indicates the corrected PSDs for the presentative
sample has multifractal characteristics.
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Figure 7 shows the cross plots of generalized dimension (Dq) and q (i.e., generalized dimension
spectrum) for all selected coal samples. We found that all generalized dimension spectra show
an inverse S-shaped. When q < 0, Dq decreases sharply with the increases of q. On the contrast,
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D0, D1 and D2 are known as the capacity dimension, information dimension, and correlation
dimension, respectively [45,46]. The calculated values of D0, D1, and D2 are presented in Table 2.
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Dmin and Dmax values for all coals range from 1.358 to 1.825 (average at 1.500), 0.626 to 0.818 (average at
0.704), respectively (Table 2).

Table 2. Multifractal parameters by multifractal analysis of the selected coal samples.

Sample No. D−10 D0 D1 D2 D10 ∆α

L1 1.548 1.000 0.924 0.878 0.762 1.002
L2 1.628 1.000 0.905 0.837 0.685 1.169
L3 1.379 1.000 0.879 0.807 0.700 0.866
L4 1.571 1.000 0.918 0.883 0.818 0.952
L5 1.457 1.000 0.828 0.739 0.626 1.032
M1 1.423 1.000 0.852 0.768 0.661 0.941
M2 1.358 1.000 0.919 0.859 0.733 0.816
M3 1.421 1.000 0.943 0.909 0.800 0.825
M4 1.537 1.000 0.892 0.819 0.686 1.068
M5 1.414 1.000 0.858 0.772 0.645 0.971
H1 1.362 1.000 0.888 0.813 0.693 0.858
H2 1.565 1.000 0.813 0.734 0.634 1.127
H3 1.468 1.000 0.827 0.740 0.640 1.020
H4 1.825 1.000 0.930 0.891 0.790 1.279
H5 1.547 1.000 0.867 0.793 0.688 1.067

Figure 8 represents the relationship between the f (α) and α (q) (i.e., multifractal spectra).
The multifractal spectrum shows a typical shape of a concave-down parabola. On the left of the
parabola, f (α) increases with the increase of α (q). In contrast, f (α) decreases with the increase of α
(q) on the right of parabola. The values of singularity strength range (∆α) range from 0.816 to 1.279,
average at a high value of 1.000 (Table 2), indicating the variability and heterogeneity characteristics of
the corrected PSDs. Considering the similar pore structure characterization in some unconventional
reservoirs, the multifractal analysis used in this study (i.e., coal) can also be applied for shales and
tight sandstone PSD heterogeneity investigations.
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Figure 9 displays the relationship of τ (q) and q (i.e., mass exponent spectra). It can be found that
when q < 0, τ (q) emerges an obvious increase trend with the increasing of q. In contrast, it emerges a
slight increase when q > 0. The changing trend of τ (q) at q < 0 is much weaker than q > 0.
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4.5. Petrophysical Characteristics and Multifractal Parameters

Previous studies show that the multifractal parameters (i.e., Dmin, Dmax and ∆α) can be used
for describing the heterogeneity characterization of PSDs [34,36]. The parameters Dmin and Dmax are
more sensitive to the heterogeneity of a low and high probability interval, respectively. In this study,
the parameters Dmin and Dmax were chosen to investigate the relationship between petrophysical
characteristics and heterogeneity characteristics.

The relationship between vitrinite and inertinite contents versus Dmin and Dmax are shown in
Figure 10. The vitrinite and inertinite contents are positively and negatively correlated with Dmin,
respectively, whereas they emerge as having no meaningful relationship with Dmax. As shown
in Figure 11, the moisture and ash contents only show a negative relationship with Dmax, and no
relationship with Dmin. The results indicate that the increase in moisture and ash content reduce the
heterogeneity of the PSDs with a high probability interval. However, in Li et al. [38], they found there
is no significant relationships between moisture and ash content with multifractal parameters. It is
possible that the samples studied in Li et al. [38] are only the tectonically deformed coal which limits
the analysis in other types of coals.

Figure 12 displays relationships of multifractal dimensions (Dmin and Dmax) vs. MIP parameters
(injection of mercury saturation and efficiency of mercury withdrawal). Dmin is negatively correlated
with the injection of mercury saturation, whereas it shows no obvious correlation with the efficiency
of mercury withdrawal. The Dmax shows a “U-morph” relationship with the efficiency of mercury
withdrawal, with a minimum value at 55%, and it shows no relationship with the injection of mercury
saturation. This may suggest that the multifractal dimension Dmax is more sensitive to the efficiency of
mercury withdrawal, while Dmin is more sensitive to the injection of mercury saturation.
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Dmax. (a) vitrinite content versus Dmin; (b) vitrinite content versus Dmax; (c) inertinite content versus
Dmin; (d) inertinite content versus Dmax.
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Figure 11. The cross plots of moisture and ash content versus multifractal parameter Dmin and Dmax.
(a) moisture content versus Dmin; (b) moisture content versus Dmax; (c) ash content versus Dmin; (d) ash
content versus Dmax.
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Figure 12. The cross plots of injection of mercury saturation and efficiency of mercury withdrawal versus
multifractal parameter Dmin and Dmax. (a) injection of mercury saturation versus Dmin; (b) injection of
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mercury withdrawal versus Dmax.

5. Conclusions

This study firstly combined MIP and LTNA data to correct the mercury intrusion volume under
high pressure ranges. Then, the multifractal analysis was applied to characterize the variability and
heterogeneity of the corrected PSDs in coals. The major conclusions made are as follows:

• Coal matrix compressibility has an evident impact on MIP data when the mercury intrusion
pressure >24.75 MPa. Combined with LTNA data, the MIP PSDs ranging between 3 and 25 nm
was corrected. The corrected mercury intrusion volume decreased by 35.51–96.65%. The matrix
compressibility coefficients vary from 0.89 × 10−10 m2/N to 2.47 × 10−10 m2/N, following a cubic
polynomial relationship with the increasing Ro,m.

• The multifractal analysis of corrected PSDs, which were determined using a combination of
MIP and LTNA data, was conducted. The multifractal spectrum shows a typical concave-down
parabola shape. On the left of the parabola, f (α) increases with the increase of α (q). In contrast,
f (α) decreases with the increase of α (q) on the right of parabola.

• When q < 0, the mass exponent spectra emerges, showing an obvious increasing trend with the
increase in q. In contrast, there is a slight increase when q > 0. The multifractal spectra generalized
dimensions and mass exponent spectra indicate the typical multifractal characteristics of corrected
PSDs for the coals.

• Multifractal parameter Dmin shows a negative relationship with inertinite contents and mercury
intrusion saturation, whereas it shows a positive relationship with the vitrinite contents. Dmax

shows a negative relationship with moisture and ash content, and a “U-shaped” trend with
efficiency of mercury withdrawal.
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