Electromagnetic Analysis and Performance Investigation of a Flux-Switching Permanent Magnet Machine
Abstract
:1. Introduction
2. Description of the Structure of an FSPM Machine
3. Analytical Approach for a Flux-Switching PM Machine
- The permeabilities of stator and rotor iron are infinite.
- The end effect is ignored.
- The eddy current effects are ignored.
3.1. Air Gap Permeance
3.2. Magnetomotive Force (MMF)
3.3. Air Gap Flux Density
4. Calculation of Back EMF
5. Air Gap Flux Density Verification through FE Simulation
6. Dependency of Performance Characteristics on Machine Geometries
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Zs | Number of stator slots |
Zm | Number of magnet pole pairs |
θ | Angular position in air gap |
g | Air gap length |
μ0 | Permeability of vacuum |
Zr | Number of rotor pole |
θm | Rotor position |
o | Slot opening |
td | Slot pitch |
c0 | Ratio of slot opening to a slot pitch |
Rg | Airgap lumped reluctance |
rg | Air gap radius |
lstk | Stack length |
Br | Residual flux density |
gm | Magnet thickness |
Am | Area of magnet |
μm | Permeability of magnet |
p | Winding pole pair |
Np | Number of turns per poles |
ωm | Mechanical speed of rotor |
Dg | Air gap diameter |
References
- Rauch, S.E.; Johnsan, L.J. Design Principles of flux-switch Alternators. AIEE Trans. 1955, 74, 1261–1268. [Google Scholar]
- Hoang, E.; Ben-Ahmed, A.H.; Lucidarme, J. Switching flux permanent magnet polyphased machines. Eur. Conf. Power Electron. Appl. 1997, 3, 903–908. [Google Scholar]
- Chen, J.T.; Zhu, Z.Q. Winding configurations and optimal stator and rotor pole combination of flux- switching PM brushless AC machines. IEEE Trans. Energy Convers. 2010, 25, 293–302. [Google Scholar] [CrossRef]
- Deodhar, R.P.; Pride, A.; Iwasaki, S.; Bremner, J.J. Performance improvement in flux-switching PM machines using flux diverters. IEEE Trans. Ind. Appl. 2014, 50, 973–978. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Chen, J.T. Advanced Flux-Switching Permanent Magnet Brushless Machines. IEEE Trans. Magn. 2010, 46, 1447–1453. [Google Scholar] [CrossRef]
- Thomas, A.S.; Zhu, Z.Q.; Wu, L.J. Novel Modular-Rotor Switched-Flux Permanent Magnet Machines. IEEE Trans. Ind. Appl. 2012, 48, 2249–2258. [Google Scholar] [CrossRef]
- Zulu, A.; Mecrow, B.C.; Armstrong, M. Permanent-Magnet Flux-Switching Synchronous Motor Employing a Segmental Rotor. IEEE Trans. Ind. Appl. 2012, 48, 2259–2267. [Google Scholar] [CrossRef]
- Al-Ani, M.M.J.; Jupp, M.L. Switched flux permanent magnet machine with segmented magnets. IET inter. Conf. on power electron. In Proceedings of the 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, 19–21 April 2016; 1, pp. 1–5. [Google Scholar]
- Hua, W.; Cheng, M.; Zhang, G. A Novel Hybrid Excitation Flux-Switching Motor for Hybrid Vehicles. IEEE Trans. Magn. 2009, 45, 4728–4731. [Google Scholar] [CrossRef]
- Lee, C.H.T.; Chau, K.T.; Chan, C.C. Comparison of Flux-Switching Machines with and Without Permanent Magnets. Chin. J. Electr. Eng. 2015, 1, 78–84. [Google Scholar]
- Chen, J.T.; Zhu, Z.Q.; Iwasaki, S.; Deodhar, R.P. A novel E-core flux-switching PM brushless AC machine. IEEE Energy Convers. Congr. Expo. 2010, 3811–3818. [Google Scholar] [CrossRef]
- Mcfarland, J.D.; Thomas, M.J.; EL-Refaie, A.M. Analysis of the Torque Production Mechanism for Flux-Switching Permanent-Magnet Machines. IEEE Trans. Ind. Appl. 2015, 51, 3041–3049. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, Y.P.D.; Iwasaki, S.; Deodhar, R.; Pride, A. Analysis of electromagnetic performance of flux-switching PM machines by non-linear adaptive lumped parameter magnetic circuit model. IEEE Trans. Magn. 2005, 41, 4277–4287. [Google Scholar] [CrossRef]
- Heller, B.; Hamata, V. Harmonic Field Effects in Induction Machines; Elsevier: Amsterdam, The Netherlands, 1977; pp. 54–67. [Google Scholar]
- Li, D.; Qu, R.; Li, J.; Xu, W.; Wu, L. Synthesis of Flux Switching Permanent Magnet Machines. IEEE Trans. Energy Convers. 2016, 31, 106–117. [Google Scholar] [CrossRef]
Coefficient | Magnitude | Number of Pole Pairs | Speed |
---|---|---|---|
Λs1, Λs2 | |||
Λs3, Λs4 | |||
Λs5, Λs6 | |||
Λs7 |
Pole/Slot Combination (Zs − 2Zr/Zs) | Zs | Number of Pole Pairs, |Zm − Zr| | |
---|---|---|---|
4:3 | (<0, not feasible) | - | - |
−4:3 | |||
2:3 | |||
−2:3 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Stator inner diameter | 406 [mm] | Rotor outer diameters | 402 [mm] |
Stator Slots | 12 | Magnet type | NdFeB |
Turns per phase | 200 [Turns] | Air-gap length | 2 [mm] |
Rated speed | 1200 RPM | Stack length | 50 [mm] |
Rotor pole | 10 |
Harmonic Order | Analytical | FEM | Error |
---|---|---|---|
4th | 0.335 | 0.347 | 3% |
6th | 1 | 1 | 0% |
8th | 0.162 | 0.295 | 45% |
16th | 0.329 | 0.381 | 15% |
18th | 0.489 | 0.641 | 24% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, M.; Kim, B. Electromagnetic Analysis and Performance Investigation of a Flux-Switching Permanent Magnet Machine. Energies 2019, 12, 3362. https://doi.org/10.3390/en12173362
Azeem M, Kim B. Electromagnetic Analysis and Performance Investigation of a Flux-Switching Permanent Magnet Machine. Energies. 2019; 12(17):3362. https://doi.org/10.3390/en12173362
Chicago/Turabian StyleAzeem, Muhammad, and Byungtaek Kim. 2019. "Electromagnetic Analysis and Performance Investigation of a Flux-Switching Permanent Magnet Machine" Energies 12, no. 17: 3362. https://doi.org/10.3390/en12173362
APA StyleAzeem, M., & Kim, B. (2019). Electromagnetic Analysis and Performance Investigation of a Flux-Switching Permanent Magnet Machine. Energies, 12(17), 3362. https://doi.org/10.3390/en12173362