Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. Numerical Modeling
2.3. Optimization Analysis
2.4. Case Study
2.4.1. Climate Zones
2.4.2. Case Study Building
2.4.3. HVAC System
3. Results
3.1. One-Dimensional Roof Solar Reflectance Optimization
3.2. One-Dimensional Roof Thermal Insulation Level Optimization
3.3. Multi-Dimensional Roof Configuration Optimization
3.4. Comparative Cost Analysis
- “cool roof” without thermal insulation layer
- “standard roof” with the thickest insulation layer (i.e., 0.25 m)
- “cool roof” with average insulation (i.e., 0.10 m)
4. Discussion
5. Conclusions and Future Developments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ρsolar | Roof coating solar reflectance (-) |
thicknessins | Roof thermal insulation layer thickness (m) |
U-value | Thermal transmittance (W/m2·K) |
HDD | Heating Degree Days (-) |
CDD | Cooling Degree Days (-) |
“standard roof” | Roof scenario characterized by ρsolar equal to 0.3 and thicknessins according to the HDD of the climate zone |
“cool roof” | Roof scenario characterized by ρsolar equal to 0.8 |
f | User-defined objective function in the optimization analysis |
xi | i-th independent variable in the optimization analysis |
li | Lower bound of the set of possible values for the i-th independent variable in the optimization analysis |
ui | Upper bound of the set of possible values for the i-th independent variable in the optimization analysis |
Etotal | Building annual HVAC energy consumption (kWh) |
ΔE | Building annual HVAC energy consumption difference between the considered roof scenario and the “standard roof” scenario (kWh) |
References
- European Commission Energy Efficiency in Buildings. Available online: https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings (accessed on 11 January 2018).
- Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61–94. [Google Scholar] [CrossRef]
- Pisello, A.L. Experimental analysis of cool traditional solar shading systems for residential buildings. Energies 2015, 8, 2197–2210. [Google Scholar] [CrossRef]
- Abuseif, M.; Gou, Z. A review of roofing methods: Construction features, heat reduction, payback period and climatic responsiveness. Energies 2018, 11, 3196. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H. Potential benefits of cool roofs on commercial buildings: Conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Effic. 2010, 3, 53–109. [Google Scholar] [CrossRef]
- Pisello, A.L. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the outdoor built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Hosseini, M.; Akbari, H. Heating energy penalties of cool roofs: The effect of snow accumulation on roofs. Adv. Build. Energy Res. 2014, 8, 1–13. [Google Scholar] [CrossRef]
- Miller, W.; Crompton, G.; Bell, J. Analysis of cool roof coatings for residential demand side management in tropical Australia. Energies 2015, 8, 5303–5318. [Google Scholar] [CrossRef]
- Hosseini, M.; Akbari, H. Effect of cool roofs on commercial buildings energy use in cold climates. Energy Build. 2016, 114, 143–155. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Akbari, H. Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build. 2007, 39, 1167–1174. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L. Cool roofs for passive cooling: performance in different climates and for different insulation levels in Italy. Adv. Build. Energy Res. 2013, 7, 155–169. [Google Scholar] [CrossRef]
- Zinzi, M.; Carnielo, E.; Federici, A. Preliminary studies of a cool roofs’ energy-rating system in Italy. Adv. Build. Energy Res. 2014, 8, 84–96. [Google Scholar] [CrossRef]
- Lucero-Álvarez, J.; Martín-Domínguez, I.R. The effect of solar reflectance, infrared emissivity, and thermal insulation of roofs on the annual energy consumption of single-family households in México. Indoor Built Environ. 2019, 28, 17–33. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; D’Orazio, M. Assessment of the effectiveness of cool and green roofs for the mitigation of the Heat Island effect and for the improvement of thermal comfort in Nearly Zero Energy Building. Archit. Sci. Rev. 2015, 58, 134–143. [Google Scholar] [CrossRef]
- Smith, G.B.; Aguilar, J.L.C.; Gentle, A.R.; Chen, D. Multi-parameter sensitivity analysis: A design methodology applied to energy efficiency in temperate climate houses. Energy Build. 2012, 55, 668–673. [Google Scholar] [CrossRef]
- Radhi, H.; Sharples, S.; Taleb, H.; Fahmy, M. Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy Build. 2017, 135, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Di Giuseppe, E.; Pergolini, M.; Stazi, F. Numerical assessment of the impact of roof reflectivity and building envelope thermal transmittance on the UHI effect. Energy Procedia 2017, 134, 404–413. [Google Scholar] [CrossRef]
- Saffari, M.; de Gracia, A.; Fernández, C.; Cabeza, L.F. Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Appl. Energy 2017, 202, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Dávi, G.A.; De Asiain, J.L.; Solano, J.; Caamaño-Martín, E.; Bedoya, C. Energy refurbishment of an office building with hybrid photovoltaic system and demand-side management. Energies 2017, 10, 1117. [Google Scholar] [CrossRef]
- Kuang, J.; Zhang, C.; Li, F.; Sun, B. Dynamic optimization of combined cooling, heating, and power systems with energy storage units. Energies 2018, 11, 2288. [Google Scholar] [CrossRef]
- Cascone, Y.; Capozzoli, A.; Perino, M. Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Appl. Energy 2018, 211, 929–953. [Google Scholar] [CrossRef]
- Gentle, A.R.; Aguilar, J.L.C.; Smith, G.B. Optimized cool roofs: Integrating albedo and thermal emittance with R-value. Sol. Energy Mater. Sol. Cells 2011, 95, 3207–3215. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.L.C.; Smith, G.B.; Gentle, A.R.; Chen, D. Optimum Integration of Albedo, Sub-Roof R-Value, and Phase Change Material for Cool Roofs. In Proceedings of the BS 2013: 13th Conference of the International Building Performance Simulation Association, Le Bourget Du Lac, France, 25–30 August 2013; pp. 1315–1321. [Google Scholar]
- Farhan, S.A.; Shafiq, N.; Azizli, K.A.M.; Soon, F.K.; Jie, L.C. Optimization of residential roof design using system dynamics and building information modeling. In Proceedings of the Engineering Challenges for Sustainable Future, Proceedings of the 3rd International Conference on Civil, offshore and Environmental Engineering, Kuala Lumpur, Malaysia, 15–17 August 2016; pp. 193–198.
- Arumugam, R.S.; Garg, V.; Ram, V.V.; Bhatia, A. Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India. J. Build. Eng. 2015, 2, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E. The joint influence of albedo and insulation on roof performance: An observational study. Energy Build. 2015, 93, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E. The joint influence of albedo and insulation on roof performance: A modeling study. Energy Build. 2015, 102, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Saafi, K.; Daouas, N. A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia. Energy 2018, 152, 925–938. [Google Scholar] [CrossRef]
- Piselli, C.; Saffari, M.; de Gracia, A.; Pisello, A.L.; Cotana, F.; Cabeza, L.F. Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems. Energy Build. 2017, 151, 81–97. [Google Scholar] [CrossRef]
- Saffari, M.; Piselli, C.; de Gracia, A.; Pisello, A.L.; Cotana, F.; Cabeza, L.F. Thermal stress reduction in cool roof membranes using phase change materials (PCM). Energy Build. 2018, 158, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Piselli, C.; Pisello, A.L.; de Gracia, A.; Saffari, M.; Cotana, F.; Cabeza, L.F. Optimization of Coupled Building Roof Solar Reflectance and Thermal Insulation Level for Annual Energy Saving Under Different Climate Zones. In SWC 2017/SHC 2017 /ISES Conference Proceedings; International Solar Energy Society: Freiburg im Breisgau, Germany, 2017. [Google Scholar] [Green Version]
- Crawley, D.B.; Pedersen, C.O.; Lawrie, L.K.; Winkelmann, F.C. Energy plus: Energy simulation program. ASHRAE J. 2000, 42, 49–56. [Google Scholar]
- Wetter, M. Design Optimization with GenOpt. Build. Energy Simul. User News 2000, 21, 19–28. [Google Scholar]
- Pisello, A.L.; Castaldo, V.L.; Piselli, C.; Fabiani, C.; Cotana, F. Thermal performance of coupled cool roof and cool façade: Experimental monitoring and analytical optimization procedure. Energy Build. 2017, 157, 35–52. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE/IES ASHRAE Standard 90.1-2016—Energy Standard for Buildings Except Low-Rise Residential Buildings; ASHRAE: Atlanta, GA, USA, 2016. [Google Scholar]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 2008, 43, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.R.; Ineichen, P.; Maxwell, E.L.; Seals, R.D.; Zelenka, A. Dynamic global-to-direct irradiance conversion models. ASHRAE Trans. 1992, 98, 354–369. [Google Scholar]
- U.S. Department of Energy (DOE). EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations; Lawrence Berkeley National Laboratory: Alameda County, CA, USA, 2016; p. 1444.
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Bamdad, K.; Cholette, M.E.; Guan, L.; Bell, J. Building energy optimisation under uncertainty using ACOMV algorithm. Energy Build. 2018, 167, 322–333. [Google Scholar] [CrossRef]
- Prada, A.; Gasparella, A.; Baggio, P. On the performance of meta-models in building design optimization. Appl. Energy 2018, 225, 814–826. [Google Scholar] [CrossRef]
- Sembroiz, D.; Careglio, D.; Ricciardi, S.; Fiore, U. Planning and operational energy optimization solutions for smart buildings. Inf. Sci. (NY) 2019, 476, 439–452. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V.; Trosset, M.W. Direct search methods: then and now. J. Comput. Appl. Math. 2000, 124, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Evins, R. A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev. 2013, 22, 230–245. [Google Scholar] [CrossRef]
- Hooke, R.; Jeeves, T.A. Direct Search’ Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Wetter, M. GenOpt(R) Generic Optimization Program User Manual Version 3.1.1; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 29 March 2016.
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification; European Geosciences Union: Munich, Germany, 2007. [Google Scholar]
- U.S. Department of Energy’s (DOE) Building Technologies Office (BTO) EnergyPlus Weather Data. Available online: https://energyplus.net/weather (accessed on 12 December 2016).
- Energy.gov. Office of Energy Efficiency & Renewable Energy Commercial Reference Buildings. Available online: https://energy.gov/eere/buildings/commercial-reference-buildings (accessed on 11 January 2018).
- Winiarski, D.; Halverson, M.; Jiang, W. PNNL’s CBECS Study. Analysis of Building Envelope Construction in 2003 CBECS Buildings; Pacific Northwest National Laboratory: Benton County, DC, USA, 2007.
- Repubblica Italiana Ministero dello Sviluppo Economico. Decreto Interministeriale 26 Giugno 2015 Applicazione Delle Metodologie di Calcolo Delle Prestazioni Energetiche e Definizione Delle Prescrizioni e Dei Requisiti Minimi Degli Edifici (In Italian); Ministero dello Sviluppo Economico: Rome, Italy, 2015.
- Winiarski, D.; Jiang, W.; Halverson, M. PNNL’s CBECS Study. Review of Preand Post-1980 Buildings in CBECS–HVAC Equipment, 2006.
- EN 15251, CS. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardization: Brussels, Belgium, 2007. [Google Scholar]
- Allesina, G.; Mussatti, E.; Ferrari, F.; Muscio, A. A calibration methodology for building dynamic models based on data collected through survey and billings. Energy Build. 2018, 158, 406–416. [Google Scholar] [CrossRef]
Zone (Köppen–Geiger) | City | HDD | CDD |
---|---|---|---|
Aw: Tropical wet and dry climate | Rio de Janeiro, Brazil | 5 | 488 |
BWh: Hot desert climate | Abu Dhabi, UEA | 31 | 1981 |
BSh: Hot semi-arid climate | New Delhi, India | 271 | 1388 |
BSk: Cold semi-arid climate | Thessaloniki, Greece | 1057 | 244 |
Cfa: Humid subtropical climate | Sydney, Australia | 717 | 112 |
Cfb: Temperate oceanic climate | Paris, France | 2643 | 53 |
Cwb: Subtropical highland climate | Mexico City, Mexico | 954 | 22 |
Csa: Hot-summer mediterranean climate | Rome, Italy | 1415 | 168 |
Csb: Warm-summer mediterranean climate | San Francisco, USA | 2653 | 13 |
Dfa: Hot-summer humid continental climate | Beijing, China | 2866 | 299 |
Dfb: Warm-summer humid continental climate | Moscow, Russia | 4748 | 22 |
Dfc: Subarctic climate | Tampere, Finland | 4068 | 9 |
HDD | U-Value (W/m2·K) | ||
---|---|---|---|
Roof | External Wall | Window | |
HDD ≤ 900 | 0.38 (EPS: 0.09 m) | 0.43 | 3.06 |
900 < HDD ≤ 1400 | 0.36 (EPS: 0.10 m) | 0.38 | 2.37 |
1400 < HDD ≤ 2100 | 0.30 (EPS: 0.12 m) | 0.34 | 1.93 |
2100 < HDD ≤ 3000 | 0.25 (EPS: 0.15 m) | 0.30 | 1.76 |
HDD ≥ 3000 | 0.23 (EPS: 0.16 m) | 0.28 | 1.49 |
HDD | City | Case | Roof ρsolar (-) | Heating Energy (kWh) | Cooling Energy (kWh) | Annual HVAC Energy (kWh) | Annual HVAC Energy Reduction (%) |
---|---|---|---|---|---|---|---|
5 | Rio de Janeiro | Optimum: | 0.8 | 0 | 13,829 | 13,829 | 3.8 |
Worst: | 0.1 | 0 | 14,374 | 14,374 | - | ||
31 | Abu Dhabi | Optimum: | 0.8 | 0 | 18,531 | 18,531 | 3.7 |
Worst: | 0.1 | 0 | 19,246 | 19,246 | - | ||
271 | New Delhi | Optimum: | 0.8 | 0 | 15,686 | 15,686 | 3.8 |
Worst: | 0.1 | 0 | 16,302 | 16,302 | - | ||
1057 | Thessaloniki | Optimum: | 0.8 | 208 | 5551 | 5759 | 5.8 |
Worst: | 0.1 | 195 | 5919 | 6114 | - | ||
717 | Sydney | Optimum: | 0.8 | 5 | 6982 | 6987 | 5.7 |
Worst: | 0.1 | 5 | 7400 | 7405 | - | ||
2643 | Paris | Optimum: | 0.8 | 1080 | 2327 | 3407 | 3.7 |
Worst: | 0.1 | 1039 | 2500 | 3539 | - | ||
954 | Mexico City | Optimum: | 0.8 | 5 | 6361 | 6366 | 7.7 |
Worst: | 0.1 | 5 | 6895 | 6900 | - | ||
1415 | Rome | Optimum: | 0.8 | 105 | 7829 | 7934 | 4.3 |
Worst: | 0.1 | 104 | 8187 | 8291 | - | ||
2653 | San Francisco | Optimum: | 0.8 | 35 | 2686 | 2721 | 9.5 |
Worst: | 0.1 | 33 | 2971 | 3004 | - | ||
2866 | Beijing | Optimum: | 0.8 | 2199 | 4841 | 7040 | 1.6 |
Worst: | 0.1 | 2076 | 5082 | 7158 | - | ||
4748 | Moscow | Optimum: | 0.5 | 7755 | 2129 | 9884 | 0.2 |
Worst: | 0.6 | 7795 | 2106 | 9901 | - | ||
4068 | Tampere | Optimum: | 0.1 | 7478 | 1465 | 8943 | 0.1 |
Worst: | 0.8 | 7619 | 1335 | 8954 | - |
HDD | City | Case | Roof thicknessins (m) | Heating Energy (kWh) | Cooling Energy (kWh) | Annual HVAC Energy (kWh) | Annual HVAC Energy Reduction (%) |
---|---|---|---|---|---|---|---|
5 | Rio de Janeiro | Optimum: | 0.25 | 0 | 14,081 | 14,081 | 3.5 |
Worst: | 0.00 | 0 | 14,586 | 14,586 | - | ||
31 | Abu Dhabi | Optimum: | 0.25 | 0 | 18,821 | 18,821 | 3.8 |
Worst: | 0.00 | 0 | 19,563 | 19,563 | - | ||
271 | New Delhi | Optimum: | 0.25 | 0 | 15,958 | 15,958 | 3.8 |
Worst: | 0.00 | 0 | 16,593 | 16,593 | - | ||
1057 | Thessaloniki | Optimum: | 0.25 | 193 | 5768 | 5961 | 4.8 |
Worst: | 0.00 | 208 | 6050 | 6258 | - | ||
717 | Sydney | Optimum: | 0.25 | 5 | 7224 | 7229 | 3.5 |
Worst: | 0.00 | 5 | 7485 | 7490 | - | ||
2643 | Paris | Optimum: | 0.25 | 1029 | 2442 | 3471 | 6.5 |
Worst: | 0.00 | 1138 | 2576 | 3714 | - | ||
954 | Mexico City | Optimum: | 0.25 | 5 | 6682 | 6687 | 4.4 |
Worst: | 0.00 | 5 | 6991 | 6996 | - | ||
1415 | Rome | Optimum: | 0.25 | 104 | 8062 | 8166 | 2.5 |
Worst: | 0.00 | 105 | 8268 | 8373 | - | ||
2653 | San Francisco | Optimum: | 0.25 | 33 | 2875 | 2908 | 7.4 |
Worst: | 0.00 | 34 | 3105 | 3139 | - | ||
2866 | Beijing | Optimum: | 0.25 | 2079 | 4990 | 7069 | 5.3 |
Worst: | 0.00 | 2241 | 5222 | 7463 | - | ||
4748 | Moscow | Optimum: | 0.25 | 7642 | 2162 | 9804 | 5.9 |
Worst: | 0.00 | 8136 | 2287 | 10,423 | - | ||
4068 | Tampere | Optimum: | 0.25 | 7433 | 1423 | 8856 | 6.4 |
Worst: | 0.00 | 7951 | 1514 | 9465 | - |
HDD | City | Case | Roof thicknessins (m) | Heating Energy (kWh) | Cooling Energy (kWh) | Annual HVAC Energy (kWh) | Annual HVAC Energy Reduction (%) |
---|---|---|---|---|---|---|---|
5 | Rio de Janeiro | Optimum: | 0.03 | 0 | 13,817 | 13,817 | 0.4 |
Worst: | 0.19 | 0 | 13,859 | 13,859 | - | ||
31 | Abu Dhabi | Optimum: | 0.04 | 0 | 18,512 | 18,512 | 0.2 |
Worst: | 0.01 | 0 | 18,554 | 18,554 | - | ||
271 | New Delhi | Optimum: | 0.09 | 0 | 15,685 | 15,685 | 0.2 |
Worst: | 0.19 | 0 | 15,710 | 15,710 | - | ||
1057 | Thessaloniki | Optimum: | 0.03 | 221 | 5502 | 5723 | 1.2 |
Worst: | 0.19 | 201 | 5594 | 5795 | - | ||
717 | Sydney | Optimum: | 0.00 | 5 | 6875 | 6880 | 2.3 |
Worst: | 0.19 | 5 | 6951 | 6956 | - | ||
2643 | Paris | Optimum: | 0.25 | 1050 | 2350 | 3401 | 2.1 |
Worst: | 0.00 | 1225 | 2249 | 3474 | - | ||
954 | Mexico City | Optimum: | 0.00 | 5 | 6221 | 6226 | 3.1 |
Worst: | 0.19 | 5 | 6420 | 6425 | - | ||
1415 | Rome | Optimum: | 0.00 | 107 | 7669 | 7776 | 2.6 |
Worst: | 0.20 | 105 | 7879 | 7984 | - | ||
2653 | San Francisco | Optimum: | 0.00 | 42 | 2551 | 2593 | 5.3 |
Worst: | 0.19 | 34 | 2702 | 2736 | - | ||
2866 | Beijing | Optimum: | 0.25 | 2144 | 4864 | 7008 | 3.5 |
Worst: | 0.00 | 2486 | 4777 | 7263 | - | ||
4748 | Moscow | Optimum: | 0.25 | 7736 | 2071 | 9807 | 5.9 |
Worst: | 0.00 | 8451 | 1974 | 10,425 | - | ||
4068 | Tampere | Optimum: | 0.25 | 7509 | 1350 | 8859 | 6.8 |
Worst: | 0.00 | 8239 | 1262 | 9501 | - |
City | Climate Zone | Optimum ρsolar (-) | Optimum thicknessins (m) | Heating (Optimum Roof) (kWh) | Cooling (Optimum Roof) (kWh) | Annual HVAC (Optimum Roof) (kWh) | Annual HVAC (Standard Roof) (kWh) | Annual HVAC Energy Savings (%) |
---|---|---|---|---|---|---|---|---|
Abu Dhabi, UEA | BWh | 0.8 | 0.11 | 0 | 18,513 | 18,513 | 19,035 | 2.7 |
New Delhi, India | BSh | 0.8 | 0.09 | 0 | 15,685 | 15,685 | 16,137 | 2.8 |
Rio de Janeiro, Brazil | Aw | 0.8 | 0.03 | 0 | 13,815 | 13,815 | 14,235 | 3.0 |
Thessaloniki, Greece | BSk | 0.8 | 0.00 | 232 | 5497 | 5728 | 6022 | 4.9 |
Sydney, Australia | Cfa | 0.8 | 0.00 | 5 | 6875 | 6880 | 7295 | 5.7 |
Mexico City, Mexico | Cwb | 0.8 | 0.00 | 5 | 6221 | 6226 | 6765 | 8.0 |
Rome, Italy | Csa | 0.8 | 0.00 | 107 | 7669 | 7776 | 8197 | 5.1 |
San Francisco, USA | Csb | 0.8 | 0.00 | 42 | 2551 | 2593 | 2931 | 11.6 |
Paris, France | Cfb | 0.8 | 0.25 | 1051 | 2350 | 3401 | 3504 | 3.0 |
Beijing, China | Dfa | 0.8 | 0.25 | 2143 | 4864 | 7007 | 7122 | 1.6 |
Tampere, Finland | Dfc | 0.4 | 0.25 | 7437 | 1416 | 8853 | 8949 | 1.1 |
Moscow, Russia | Dfb | 0.1 | 0.25 | 7610 | 2192 | 9802 | 9893 | 0.9 |
Roof Configuration | Cost (€/m2) |
---|---|
“cool roof” without thermal insulation | 15 |
“standard roof” with 0.25 m thickness insulation | 23 |
“cool roof” with 0.10 m thickness insulation | 21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piselli, C.; Pisello, A.L.; Saffari, M.; de Gracia, A.; Cotana, F.; Cabeza, L.F. Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions. Energies 2019, 12, 3354. https://doi.org/10.3390/en12173354
Piselli C, Pisello AL, Saffari M, de Gracia A, Cotana F, Cabeza LF. Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions. Energies. 2019; 12(17):3354. https://doi.org/10.3390/en12173354
Chicago/Turabian StylePiselli, Cristina, Anna Laura Pisello, Mohammad Saffari, Alvaro de Gracia, Franco Cotana, and Luisa F. Cabeza. 2019. "Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions" Energies 12, no. 17: 3354. https://doi.org/10.3390/en12173354
APA StylePiselli, C., Pisello, A. L., Saffari, M., de Gracia, A., Cotana, F., & Cabeza, L. F. (2019). Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions. Energies, 12(17), 3354. https://doi.org/10.3390/en12173354