A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olutade, B.; Hunt, W. Sensitivity analysis of a thin film bulk acoustic resonator ladder filter. In Proceedings of the International Frequency Control Symposium, Orlando, FL, USA, 30 May 1997. [Google Scholar]
- Wang, Z.L. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.Y.; Wang, Y.; Wang, Y.G.; Du, X.L.; Xue, Q.K.; Zhang, Z. Polarity determination of ZnO thin films by electron holography. Appl. Phys. Lett. 2004, 84, 2067–2069. [Google Scholar] [CrossRef]
- Corso, A.D.; Posternak, M.; Resta, R.; Baldereschi, A. Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys. Rev. B 1994, 50, 10715–10721. [Google Scholar] [CrossRef] [PubMed]
- Gopal, P.; Spaldin, N. Polarization, Piezoelectric Constants, and Elastic Constants of ZnO, MgO, and CdO. J. Electron. Mater. 2006, 35, 538–542. [Google Scholar] [CrossRef]
- Dahiya, R.; Valle, M. Robotic Tactile Sensing, Technologies and System; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yin, B.; Qiu, Y.; Zhang, H.; Lei, J.; Chang, Y.; Ji, J.; Luo, Y.; Zhao, Y.; Hu, L. Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO–ZnO p–n junction formation. Nano Energy 2015, 14, 95–101. [Google Scholar] [CrossRef]
- Lei, J.; Yin, B.; Qiu, Y.; Zhang, H.; Chang, Y.; Luo, Y.; Zhao, Y.; Ji, J.; Hu, L. Flexible piezoelectric nanogenerator based on Cu2O–ZnO p–n junction for energy harvesting. RSC Adv. 2015, 5, 59458–59462. [Google Scholar] [CrossRef]
- Yang, R.; Qin, Y.; Dai, L.; Wang, Z.L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2008, 4, 34–39. [Google Scholar] [CrossRef]
- Lee, M.; Chen, C.Y.; Wang, S.; Cha, S.N.; Park, Y.J.; Kim, J.M.; Chou, L.J.; Wang, Z.L. Correction: A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Adv. Mater. 2012, 24, 5283. [Google Scholar] [CrossRef]
- Przezdziecka, E.; Chusnutdinow, S.; Guziewicz, E.; Snigurenko, D.; Stachowicz, M.; Kopalko, K.; Reszka, A.; Kozanecki, A. The p-ZnO:N/i-Al2O3/n-GaN heterostructure—Electron beam induced profiling, electrical properties and UV detectivity. J. Phys. D Appl. Phys. 2015, 48, 325105. [Google Scholar] [CrossRef]
- Lee, E.; Park, J.; Yim, M.; Kim, Y.; Yoon, G. Characteristics of piezoelectric ZnO/AlN−stacked flexible nanogenerators for energy harvesting applications. Appl. Phys. Lett. 2015, 106, 023901. [Google Scholar] [CrossRef]
- Yoon, C.; Jeon, B.; Yoon, G. Formation and Characterization of Various ZnO/SiO2-Stacked Layers for Flexible Micro-Energy Harvesting Devices. Appl. Sci. 2018, 8, 1127. [Google Scholar] [CrossRef]
- Jeon, B.; Ha, J.; Yoon, C.; Yoon, G. Effect of a-Si thin film on the performance of a-Si/ZnO-stacked piezoelectric energy harvesters. Appl. Phys. Lett. 2018, 113, 243902. [Google Scholar] [CrossRef]
- Park, H.K.; Lee, K.Y.; Seo, J.S.; Jeong, J.A.; Kim, H.K.; Choi, D.; Kim, S.W. Charge-Generating Mode Control in High-Performance Transparent Flexible Piezoelectric Nanogenerators. Adv. Funct. Mater. 2011, 21, 1187–1193. [Google Scholar] [CrossRef]
- Lee, E.; Park, J.; Yim, M.; Jeong, S.; Yoon, G. High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films. Appl. Phys. Lett. 2014, 104, 213908. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kumar, B.; Seo, J.S.; Kim, K.H.; Sohn, J.I.; Cha, S.N.; Choi, D.; Wang, Z.L.; Kim, S.W. P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators. Nano Lett. 2012, 12, 1959–1964. [Google Scholar] [CrossRef]
- Dannier, A.; Brando, G.; Ruggiero, F.N. The Piezoelectric Phenomenon in Energy Harvesting Scenarios: A Theoretical Study of Viable Applications in Unbalanced Rotor Systems. Energies 2019, 12, 708. [Google Scholar] [CrossRef]
- Craciun, E.; Baesu, E.; Soos, E. General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: Application to Mode III fracture propagation. J. Appl. Math. 2005, 70, 39–52. [Google Scholar] [CrossRef]
- Singkaselit, K.; Sakulkalavek, A.; Sakdanuphab, R. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035002. [Google Scholar] [CrossRef]
- Kim, M.; Kim, K. Rapid thermal annealing at the temperature of 650 °C Ag films on SiO2 deposited STS substrates. Appl. Sci. Converg. Technol. 2017, 26, 208–213. [Google Scholar]
- Peng, F.; Wang, H.; Yu, H.; Chen, S. Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation. Mater. Res. Bull. 2006, 41, 2123–2129. [Google Scholar] [CrossRef]
- Kim, D.H.; Yim, M.; Chai, D.; Yoon, G. Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices. Electron. Lett. 2003, 39, 962–964. [Google Scholar] [CrossRef]
- Lee, E.; Mai, L.; Yoon, G. Development of High-Quality FBAR Devices for Wireless Applications Employing Two-Step Annealing Treatments. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 604–606. [Google Scholar] [CrossRef]
- Isarakorn, D.; Sambri, A.; Janphuang, P.; Briand, D.; Gariglio, S.; Triscone, J.M.; Guy, F.; Reiner, J.W.; Ahn, C.H.; Rooij, N.F.D. Epitaxial piezoelectric MEMS on silicon. J. Micromech. Microeng. 2010, 20, 055008. [Google Scholar] [CrossRef]
- Todeschini, M.; Fanta, A.B.D.S.; Jensen, F.; Wagner, J.B.; Han, A. Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films. ACS Appl. Mater. Interfaces 2017, 9, 37374–37385. [Google Scholar] [CrossRef]
- Mai, L.; Lee, J.Y.; Pham, V.S.; Yoon, G. Design and Fabrication of ZnO-Based FBAR Microwave Devices for Mobile WiMAX Applications. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 867–869. [Google Scholar] [CrossRef]
- Eastment, R.M.; Mee, C.H.B. Work function measurements on (100), (110) and (111) surfaces of aluminium. J. Phys. F: Met. Phys. 1973, 3, 1738–1745. [Google Scholar] [CrossRef]
- Attema, J.J.; Uijttewaal, M.A.; Wijs, G.A.D.; Groot, R.A.D. Work function anisotropy and surface stability of half-metallic CrO2. Phys. Rev. B 2008, 77, 165109. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Pethuraja, G.G.; Welser, R.E.; Sood, A.K.; Lee, C.; Alexander, N.J.; Efstathiadis, H.; Haldar, P.; Harvey, J.L. Current-Voltage Characteristics of ITO/p-Si and ITO/n-Si Contact Interfaces. Adv. Mater. Phys. Chem. 2012, 02, 59–62. [Google Scholar] [CrossRef]
- Firek, P.; Szmidt, J.; Nowakowska-Langier, K.; Zdunek, K. Electric Characterization and Selective Etching of Aluminum Oxide. Plasma Process. Polym. 2009, 6, 840–843. [Google Scholar] [CrossRef]
- Ren, N.; Zhu, J.; Ban, S. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature. AIP Adv. 2017, 7, 055009. [Google Scholar] [CrossRef]
Material | RF Power (W) | Film Thickness (nm) | Deposition Time (min) | Gas/Flow Rate (sccm) |
---|---|---|---|---|
ITO | 200 | 446 | 30 | Ar/20 |
1390 | 90 | |||
AlN | 80 | 33 | 40 | |
n-type a-Si | 57 | |||
SiO2 | 52 | |||
Cr | 160 | 192 | 30 | |
ZnO | 200 | 485 | 90 | Ar/18 + N2O/12 |
Sample Name | SA-1 | SA-2 | SA-3 | SA-4 | SA-5 | SB-1 | SB-2 | SB-3 |
---|---|---|---|---|---|---|---|---|
Annealing process | as-deposited | one-step | two-step | one-step | two-step | as-deposited | one-step | two-step |
Temperature | 300 °C | 300 °C | 400 °C | 400 °C | 300 °C | 400 °C | ||
Duration | 1 h | 1 h | 1 h | 1 h | 1 h | 0.5 h |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, C.; Jeon, B.; Yoon, G. A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil. Energies 2019, 12, 2797. https://doi.org/10.3390/en12142797
Yoon C, Jeon B, Yoon G. A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil. Energies. 2019; 12(14):2797. https://doi.org/10.3390/en12142797
Chicago/Turabian StyleYoon, Chongsei, Buil Jeon, and Giwan Yoon. 2019. "A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil" Energies 12, no. 14: 2797. https://doi.org/10.3390/en12142797
APA StyleYoon, C., Jeon, B., & Yoon, G. (2019). A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil. Energies, 12(14), 2797. https://doi.org/10.3390/en12142797