Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Combustion Equipment and Procedure
2.2. Physicochemical Characterization and Fatty Acids Profile of the VOs
3. Results and Discussion
3.1. Experimental Design
3.2. Descriptive Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Parliament and the Council of the European Union. Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport. Off. J. Eur. Union 2003, L123, 42–46. [Google Scholar]
- Bazooyar, B.; Shariati, A.; Hashemabadi, S.H. Economy of a utility boiler power plant fueled with vegetable oil, biodiesel, petrodiesel and their prevalent blends. Sustain. Prod. Consum. 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Bazooyar, B.; Shariati, A.; Hashemabadi, S.H. Characterization and Reduction of NO during the Combustion of Biodiesel in a Semi-industrial Boiler. Energy Fuels 2015, 29, 6804–6814. [Google Scholar] [CrossRef]
- Bazooyar, B.; Ebrahimzadeh, E.; Jomekian, A.; Shariati, A. NOx Formation of Biodiesel in Utility Power Plant Boilers. Part A: Influence of Fuel Characteristics. Energy Fuels 2014, 28, 3778–3792. [Google Scholar] [CrossRef]
- Bazooyar, B.; Ghorbani, A.; Shariati, A. Combustion performance and emissions of petrodiesel and biodiesels based on various vegetable oils in a semi industrial boiler. Fuel 2011, 90, 3078–3092. [Google Scholar] [CrossRef]
- Pereira, C.; Wang, G.; Costa, M. Combustion of biodiesel in a large-scale laboratory furnace. Energy 2014, 74, 950–955. [Google Scholar] [CrossRef]
- Kermes, V.; Belohradsky, P. Biodiesel (EN 14213) heating oil substitution potential for petroleum based light heating oil in a 1 MW stationary combustion facility. Biomass Bioenergy 2013, 49, 10–21. [Google Scholar] [CrossRef]
- Macor, A.; Pavanello, P. Performance and emissions of biodiesel in a boiler for residential heating. Energy 2009, 34, 2025–2032. [Google Scholar] [CrossRef]
- Tashtoush, G.; Al-Widyan, M.I.; Al-Shyoukh, A.O. Combustion performance and emissions of ethyl ester of a waste vegetable oil in a water-cooled furnace. Appl. Therm. Eng. 2013, 23, 285–293. [Google Scholar] [CrossRef]
- Ghorbani, A.; Bazooyar, B. Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler. Energy 2012, 44, 217–227. [Google Scholar] [CrossRef]
- Ghorbani, A.; Bazooyar, B.; Shariati, A.; Jokar, S.M.; Ajami, H.; Naderi, A. A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler. Appl. Energy 2011, 88, 4725–4732. [Google Scholar] [CrossRef]
- Ng, H.K.; Gan, S. Combustion performance and exhaust emissions from the non-pressurised combustion of palm oil biodiesel blends. Appl. Therm. Eng. 2010, 30, 2476–2484. [Google Scholar] [CrossRef]
- González-González, J.F.; Al-Kassir, A.; San José, J.; González, J.; Gómez-Landero, A. Study of combustion process of biodiesel/gasoil mixture in a domestic heating boiler of 26.7 kW. Biomass Bioenergy 2014, 60, 178–188. [Google Scholar] [CrossRef]
- San José, J.; Al-Kassir, A.; López-Sastre, J.A.; Gañán, J. Analysis of biodiesel combustion in a boiler with pressure operated mechanical pulverisation burner. Fuel Process. Technol. 2011, 92, 271–277. [Google Scholar]
- Lee, S.W.; Herage, T.; Young, B. Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel. Fuel 2004, 83, 1607–1613. [Google Scholar] [CrossRef]
- López-Sastre, J.A.; San José-Alonso, J.F.; Romero-Ávila, C.; López, E.J.; Rodríguez-Alonso, C. A study of decrease in fossil CO2 emissions of energy generation by using vegetable oils as combustible. Build. Environ. 2003, 38, 129–133. [Google Scholar] [CrossRef]
- San José-Alonso, J.F.; Romero-Ávila, C.; López Sastre, J.A.; Izquierdo-Iglesias, C.; López, E.J. Using mixtures of diesel and sunflower oil as fuel for heating purposes in Castilla y León. Energy 2005, 30, 573–582. [Google Scholar]
- San José-Alonso, J.F.; López-Sastre, J.A.; Rodríguez-Duque, E.; López, E.J.; Romero-Ávila, C. Combustion of Soya Oil and Diesel Oil Mixtures for Use in Thermal Energy Production. Energy Fuels 2008, 22, 3513–3516. [Google Scholar] [CrossRef]
- San José-Alonso, J.; López-Sastre, J.A.; Romero-Ávila, C.; López, E.J.A. note on the combustion of blends of diesel and soya, sunflower and rapeseed vegetable oils in a light boiler. Biomass Bioenergy 2008, 32, 880–886. [Google Scholar] [CrossRef]
- San José-Alonso, J.; López-Sastre, J.A.; Romero-Ávila, C.; López, E.J. Combustion of rapeseed oil and diesel oil mixtures for use in the production of heat energy. Fuel Process. Technol. 2006, 87, 97–102. [Google Scholar] [CrossRef]
- San José-Alonso, J.F.; Gobernado-Arribas, I.; Alonso-Miñambres, S. Study of combustion in residential oil burning equipment of animal by-products and derived products not intended for human consumption. Int. J. Energy Environ. Eng. 2013, 4, 31–44. [Google Scholar] [CrossRef]
- San José-Alonso, J.F.; Romero-Ávila, C.; San José-Hernández, L.M.; Al-Kassir, A. Characterizing biofuels and selecting the most appropriate burner for their combustion. Fuel Process. Technol. 2012, 103, 39–44. [Google Scholar] [CrossRef]
- San José, J.; Sanz-Tejedor, M.A.; Arroyo, Y. Effect of fatty acid composition in vegetable oils on combustion processes in an emulsion burner. Fuel Process. Technol. 2015, 130, 20–30. [Google Scholar] [CrossRef]
- Sanz-Tejedor, M.A.; Arroyo, Y.; San José, J. Influence of Degree of Unsaturation on Combustion performance and Flue Gas Emissions of Burning Five Refined Vegetable Oils in an Emulsion Burner. Energy Fuels 2016, 30, 7357–7366. [Google Scholar] [CrossRef]
- San José, J.; Sanz-Tejedor, M.A.; Arroyo, Y. Spray Characteristics, Combustion Performance, and Palm Oil Emissions in a Low-Pressure Auxiliary Air Fluid Pulverization Burner. Energy Fuels 2018, 32, 11502–11510. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013; Chapter 28. [Google Scholar]
- European Parliament and of the council of the European Union. Directive 2010/75/EU on industrial emissions (integrated pollution prevention and control). Off. J. Eur. Union 2010, L334, 17. [Google Scholar]
- Mann, P.S. Introductory Statistics, 2nd ed.; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
Parameter (Sensor) | Measuring Range | Accuracy | Resolution |
---|---|---|---|
oxygen, O2 (electrochemical) | 0–25% | ± 0.2% | 0.01% |
carbon monoxide 1, CO (ibid) | 0–500 ppm | ±2 ppm (<40 ppm); ±5% (< 500 ppm) | 0.1 ppm |
nitrogen oxides, NO, NOx (ibid) | 0–3000 ppm | ±5 ppm (<99 ppm); ±5% (< 2000 ppm) | 1 ppm |
sulfur dioxide, SO2 (ibid) | 0–1450 ppm | ±5 ppm (< 100 ppm) | 1 ppm |
total hydrocarbons, CXHY (ibid) | 0–6000 ppm | ±10% of reading | 10 ppm |
flue gases temperature, Tg | −40 to 1200 °C | ±0.5% (< 100 °C) | 1.0 ± 0.3% of reading |
Characteristics | Unit | VSfO | RSfO | VRpO | Standard |
---|---|---|---|---|---|
C (%) | % (m·m−1) | 76.5 | 76.0 | 77.5 | ASTM 5291 |
H (%) | % (m·m−1) | 11.2 | 11.3 | 11.4 | ASTM 5291 |
N (%) | % (m·m−1) | <0.03 | <0.03 | <0.03 | ASTM 5291 |
S (%) | % (m·m−1) | <0.02 | <0.02 | <0.02 | ASTM 1552 |
O 1 (%) | % (m·m−1) | 12.2 | 12.6 | 11.0 | - |
ash (%) | % (m·m−1) | 0.011 | 0.006 | 0.026 | EN 6245 |
acidity (%) | % (m·m−1) | 2.03 | 0.02 | 0.77 | ISO 660 |
humidity (%) | % (m·m−1) | 0.09 | 0.01 | 0.10 | ISO 662 |
density at 15 °C | kg·m−3 | 923.3 | 923.5 | 920.1 | ISO 12185 |
density at 35 °C | kg·m−3 | 910.0 | 909.6 | 906.9 | ISO 12185 |
density at 60 °C | kg·m−3 | 893.1 | 892.6 | 890.0 | ISO 12185 |
kinematic viscosity at 40 °C | mm2·s−1 | 31.80 | 32.78 | 35.62 | ISO 3104 |
kinematic viscosity at 100 °C | mm2·s−1 | 7.61 | 7.77 | 7.96 | ISO 3104 |
H.H.V. | kJ·kg−1 | 39309 | 39405 | 39564 | ASTM 240 |
L.H.V. | kJ·kg−1 | 36932 | 37007 | 37146 | ASTM 240 |
Fatty Acid | Carbons: Unsaturations | VSfO | RSfO | VRpO |
---|---|---|---|---|
Myristic | C14:0 | 0.07 | 0.07 | 0.05 |
Palmitic | C16:0 | 6.1 | 6.0 | 4.6 |
Palmitoleic | C16:1 | 0.1 | 0.1 | 0.2 |
Margaric | C17:0 | 0.04 | 0.04 | 0.05 |
Stearic | C18:0 | 4.3 | 4.1 | 1.7 |
Oleic | C18:1 | 25.3 | 29.5 | 62.9 |
Linoleic | C18:2 | 61.9 | 58.5 | 20.3 |
Linolenic | C18:3 | 0.12 | 0.1 | 7.6 |
Arachidic | C20:0 | 0.32 | 0.3 | 0.6 |
Gadoleic | C20:1 | 0.2 | 0.2 | 1.2 |
Behenic | C22 | 1.0 | 0.8 | 0.3 |
Lignoceric | C24 | 0.3 | 0.3 | 0.1 |
trans isomers | - | - | 0.31 | - |
Sterols (ppm) | - | 3816 | 3201 | 8650 |
Wax (ppm) | - | 454 | 75 | - |
UD 1 (%) | - | 149.8 | 147.1 | 127.8 |
Fuel Flow-Airflow | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C3-Amin | C3-Amid | C6-Amin | C6-Amid | ||||||||||
measured values | |||||||||||||
Gas emissions | VOs | μ | σ | CV (%) | Μ | σ | CV (%) | μ | σ | CV (%) | μ | σ | CV (%) |
O2, % vol | VSfO | 11.08 | 0.33 | 2.93 | 10.91 | 0.09 | 0.87 | 9.62 | 0.62 | 6.44 | 10.43 | 0.14 | 1.29 |
RSfO | 11.5 | 0.09 | 0.78 | 11.34 | 0.16 | 1.41 | 10.03 | 0.17 | 1.65 | 10.59 | 0.11 | 1.09 | |
VRpO | 10.96 | 0.79 | 7.17 | 11.43 | 0.38 | 3.28 | 9.50 | 0.03 | 0.37 | 9.96 | 0 | 0 | |
CO, ppm | VSfO | 19.50 | 4.50 | 2.33 | 121.00 | 0 | 0 | 216.00 | 21.00 | 9.72 | 147.50 | 5.50 | 3.73 |
RSfO | 216.50 | 1.50 | 0.69 | 146.00 | 1.00 | 0.68 | 232.00 | 6.00 | 2.59 | 158.00 | 1.00 | 0.63 | |
VRpO | 182.00 | 10.00 | 5.49 | 133.00 | 2.00 | 1.50 | 203.00 | 4.00 | 1.97 | 117.00 | 7.00 | 5.98 | |
NOx, ppm | VSfO | 29.50 | 0.50 | 1.69 | 44.50 | 0.50 | 1.12 | 32.00 | 0 | 0 | 41.50 | 0.50 | 1.20 |
RSfO | 31.00 | 0 | 0 | 40.00 | 0 | 0 | 29.00 | 0 | 0 | 39.00 | 2.00 | 5.13 | |
VRpO | 30.00 | 1.00 | 3.33 | 46.50 | 0.50 | 1.08 | 32.00 | 0 | 0 | 45.00 | 0 | 0 | |
CxHy, ppm | VSfO | 225.00 | 5.00 | 2.22 | 175.00 | 5.00 | 2.86 | 150.00 | 20.00 | 13.33 | 125.00 | 5.00 | 4.00 |
RSfO | 195.00 | 5.00 | 2.56 | 200.00 | 30.00 | 15.00 | 155.00 | 5.00 | 3.23 | 230.00 | 10.00 | 4.35 | |
VRpO | 190.00 | 10.00 | 5.26 | 195.00 | 15.00 | 7.69 | 155.00 | 15.00 | 9.68 | 175.00 | 35.00 | 20.00 | |
ta1, °C | VSfO | 29.2 | 1.0 | 3.39 | 30.2 | 1.7 | 5.62 | 32.3 | 0.4 | 1.31 | 30.4 | 0.4 | 1.39 |
RSfO | 31.6 | 0.6 | 2.01 | 32.4 | 0.1 | 0.44 | 30.7 | 0.4 | 1.38 | 31.1 | 0.6 | 1.82 | |
VRpO | 32.3 | 0.8 | 2.41 | 31.2 | 0.1 | 0.23 | 30.4 | 0.1 | 0.46 | 31.8 | 0.07 | 0.22 | |
tg2, °C | VSfO | 398.45 | 6.75 | 1.69 | 437.30 | 2.10 | 0.48 | 456.45 | 13.35 | 2.92 | 452.35 | 3.75 | 0.83 |
RSfO | 396.75 | 1.15 | 0.29 | 430.65 | 3.65 | 0.85 | 432.90 | 9.60 | 2.22 | 448.95 | 2.85 | 0.63 | |
VRpO | 401.95 | 22.45 | 5.59 | 410.55 | 9.15 | 2.23 | 430.7 | 4.00 | 0.93 | 454.55 | 0.75 | 0.16 | |
calculated values | |||||||||||||
λ | VSfO | 1.99 | 0.06 | 2.90 | 1.96 | 0.02 | 0.84 | 1.76 | 0.09 | 4.90 | 1.88 | 0.02 | 1.14 |
RSfO | 2.07 | 0.02 | 0.83 | 2.01 | 0.03 | 1.44 | 1.82 | 0.02 | 1.34 | 1.90 | 0.02 | 0.98 | |
VRpO | 1.98 | 0.14 | 6.92 | 2.05 | 0.07 | 3.45 | 1.74 | 0.00 | 0.27 | 1.81 | 0 | 0 | |
CO2, % vol | VSfO | 7.88 | 0.24 | 2.99 | 8.01 | 0.07 | 0.86 | 8.94 | 0.45 | 5.06 | 8.36 | 0.10 | 1.18 |
RSfO | 7.59 | 0.07 | 0.86 | 7.82 | 0.12 | 1.48 | 8.66 | 0.12 | 1.39 | 8.25 | 0.08 | 1.01 | |
VRpO | 7.83 | 0.56 | 7.13 | 7.50 | 0.27 | 3.55 | 8.87 | 0.03 | 0.28 | 8.54 | 0 | 0 | |
η, % | VSfO | 71.92 | 0.43 | 0.60 | 69.62 | 0.24 | 0.35 | 72.12 | 0.76 | 1.06 | 70.05 | 0.17 | 0.24 |
RSfO | 70.91 | 0.24 | 0.35 | 69.40 | 0.27 | 0.39 | 72.60 | 0.23 | 0.32 | 69.88 | 0.12 | 0.18 | |
VRpO | 71.69 | 0.72 | 1.01 | 69.44 | 0.57 | 0.82 | 73.54 | 0.15 | 0.21 | 70.82 | 0.05 | 0.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San José, J.; Arroyo, Y.; Sanz-Tejedor, M.A. Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions. Energies 2019, 12, 2372. https://doi.org/10.3390/en12122372
San José J, Arroyo Y, Sanz-Tejedor MA. Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions. Energies. 2019; 12(12):2372. https://doi.org/10.3390/en12122372
Chicago/Turabian StyleSan José, Julio, Yolanda Arroyo, and María Ascensión Sanz-Tejedor. 2019. "Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions" Energies 12, no. 12: 2372. https://doi.org/10.3390/en12122372
APA StyleSan José, J., Arroyo, Y., & Sanz-Tejedor, M. A. (2019). Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions. Energies, 12(12), 2372. https://doi.org/10.3390/en12122372