LCpL Filter Design and Control for Stability Improvement in a Stand-Alone Microgrid with Sub Inverter Structure
Abstract
:1. Introduction
2. System Description
3. System Analysis
4. Proposed LCpL Filter Design Method
4.1. Design Procedure
- Equation (3) shows the characteristic equation for the RLC parallel circuit.The cut-off frequencies, LfCf and ωo, should be determined. In the above equation, ωo = 1/√(LpCf) and α = 1/2RCf. The condition α < ωo has to be satisfied to obtain an underdamped response, wherein the voltage equation can be expressed by Equation (2) and the natural resonance frequency ωd is given by √(ωo2 − α2) [39].
- The saturation flux density of the transformer Bs, nominal voltage vr, nominal frequency ωr, and flux density of the transformer at nominal voltage Br should be determined.
- The delay tdelay should be determined.
- The flux density surplus of the transformer Be is equal to Bs − Br.
- The natural frequency ωd is determined to be the nominal frequency.
- α is determined using Equation (4).Equation (4) defines the magnetic flux offset Bk caused by difference between the original reference and microgrid voltages during tdelay.
- The power factor limit at the nominal frequency is determined when both the diesel generator and inverter are in operation. Using the set power factor, the reactive power Q is calculated from the fixed power factor PF as shown in Equation (5), where Pd represents the rated power of one phase of the diesel generator.
- The required total capacitance of the microgrid is calculated using ωd, Q, α, vr, and ωr. Equation (6) defines the reactive power CT || LT, which can be summarized using Equation (7). Here, CT and LT are the total capacitance and inductance of the microgrid, respectively.Equation (8) is valid under the underdamped response condition.Equation (9) given below can be derived from Equations (7) and (8).CT can be obtained using Equation (10) when ωd is equal to ωr, and results in Equation (11) when substituted with the equation for α.
- The value of Cf can be calculated by dividing CT by Ninv (the number of inverters).
- CT and α are used to calculate the value of R.
- ωo can be calculated using Equation (8), while LT is equal to 1/(ωo2CT) and Lp is LT × Ninv.
- Lf is equal to 1/(ωf2Cf).
4.2. Design Example
5. Proposed Control Method
5.1. Sub Inverter Startup Method
5.2. Sub Inverter Control Algorithm
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. World Energy Outlook 2018; IEA: Paris, France, 2018. [Google Scholar]
- REN21. Renewables 2018 Global Status Report; REN21: Paris, France, 2018. [Google Scholar]
- Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C. Microgrids. IEEE Power Energy Mag. 2007, 5, 5–94. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trend in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W. Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electron. 2015, 30, 30–7089. [Google Scholar] [CrossRef]
- Eid, B.M.; Rahim, N.A.; Selvaraj, J.; El Khateb, A.H. Control methods and objectives for electronically coupled distributed energy resources in microgrids: A review. IEEE Syst. J. 2016, 10, 446–458. [Google Scholar] [CrossRef]
- Senjyu, T.; Nakaji, T.; Uezato, K.; Funabashi, T. A hybrid power system using alternative energy facilities in isolated island. IEEE Trans. Energy Convers. 2005, 20, 406–414. [Google Scholar] [CrossRef]
- Nayar, C.; Tang, M.; Suponthana, W. Wind/PV/diesel micro grid system implemented in remote islands in the Republic of Maldives. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; pp. 1076–1080. [Google Scholar]
- De Souza Ribeiro, L.A.; Saavedra, O.R.; De Lima, S.L.; De Matos, J.G. Isolated micro-grids with renewable hybrid generation: The case of Lençóis Island. IEEE Trans. Sustain. Energy 2011, 2, 1–11. [Google Scholar] [CrossRef]
- SA Energy Storage 2018: Energy Storage for Robben Island Solar Microgrid. Available online: http://www. energystorage.co.za/energy-storage-robben-island-solar-microgrid (accessed on 23 May 2019).
- ABB: ABB Microgrid Technology to Power Robben Island. Available online: http://www.abb.com/cawp/seitp202/3C283668CC6BDC78482581C5001F7FF7.aspx (accessed on 23 May 2019).
- Ma, Z.; Santos, A.Q.; Gamborg, F.; Nielsen, J.F.; Johannesen, J.M.; Dahl, M.; Jensen, H.; Pedersen, M.R.; Jørgensen, B.N. Solutions for remote island microgrids: Discussion and analysis of Indonesia’s remote island energy system. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 493–498. [Google Scholar]
- Tirumala, R.; Mohan, N.; Henze, C. Seamless transfer of grid-connected PWM inverters between utility-interactive and stand-alone modes. In Proceedings of the APEC Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, USA, 10–14 March 2002; pp. 1081–1086. [Google Scholar]
- Yao, Z.; Wang, Z.; Xiao, L.; Yan, Y. A novel control strategy for grid-interactive inverter in grid-connected and stand-alone modes. In Proceedings of the Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition (APEC ′06), Dallas, TX, USA, 19–23 March 2006. [Google Scholar]
- Jung, S.; Bae, Y.; Choi, S.; Kim, H. Low cost utility interactive inverter for residential fuel cell generation. IEEE Trans. Power Electron. 2007, 22, 2293–2298. [Google Scholar] [CrossRef]
- Kim, H.; Yu, T.; Choi, S. Indirect current control algorithm for utility interactive inverters in distributed generation systems. IEEE Trans. Power Electron. 2008, 23, 1342–1347. [Google Scholar]
- Hwang, T.S.; Park, S.Y. A seamless control strategy of a distributed generation inverter for the critical load safety under strict grid disturbances. IEEE Trans. Power Electron. 2013, 28, 4780–4790. [Google Scholar] [CrossRef]
- Kwon, J.; Yoon, S.; Choi, S. Indirect current control for seamless transfer of three-phase utility interactive inverters. IEEE Trans. Power Electron. 2012, 27, 773–781. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhao, Y. A unified control strategy for three-phase inverter in distributed generation. IEEE Trans. Power Electron. 2014, 29, 1176–1191. [Google Scholar] [CrossRef]
- Fatu, M.; Blaabjerg, F.; Boldea, I. Grid to standalone transition motion-sensorless dual-inverter control of PMSG with asymmetrical grid voltage sags and harmonics filtering. IEEE Trans. Power Electron. 2014, 29, 3463–3472. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Shadmand, M.B.; Balog, R.S. Model predictive control of a voltage-source inverter with seamless transition between islanded and grid-connected operations. IEEE Trans. Ind. Electron. 2017, 64, 7906–7918. [Google Scholar] [CrossRef]
- Das, D.; Gurrala, G.; Shenoy, U.J. Linear quadratic regulator-based bumpless transfer in microgrids. IEEE Trans. Smart Grid 2018, 9, 416–425. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Vicuna, L.G.; Matas, J.; Castilla, M.; Miret, J. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 2005, 52, 1126–1135. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Matas, J.; Vicuna, L.G.; Castilla, M.; Miret, J. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans. Ind. Electron. 2007, 54, 994–1004. [Google Scholar] [CrossRef]
- Majumder, R.; Chaudhuri, B.; Ghosh, A.; Majumder, R.; Ledwich, G.; Zare, F. Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans. Power Syst. 2010, 25, 796–808. [Google Scholar] [CrossRef]
- Bevrani, H.; Shokoohi, S. An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids. IEEE Trans. Smart Grid 2013, 4, 1505–1513. [Google Scholar] [CrossRef]
- Han, H.; Liu, Y.; Sun, Y.; Su, M.; Guerrero, J.M. An improved droop control strategy for reactive power sharing in islanded microgrid. IEEE Trans. Power Electron. 2015, 30, 3133–3141. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Liu, J.; An, R.; Xin, M. Breaking the boundary: A droop and master-slave hybrid control strategy for parallel inverters in islanded microgrids. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 3345–3352. [Google Scholar]
- Chen, J.F.; Chu, C.L. Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation. IEEE Trans. Power Electron. 1995, 10, 547–558. [Google Scholar]
- Lee, W.C.; Lee, T.K.; Lee, S.H.; Kim, K.H.; Hyun, D.S.; Suh, I.Y. A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. (APEC ′04.), Anaheim, CA, USA, 22–26 February 2004; pp. 456–462. [Google Scholar]
- Sun, X.; Wong, L.K.; Lee, Y.S.; Xu, D. Design and analysis of an optimal controller for parallel multi-inverter systems. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 56–61. [Google Scholar]
- Patel, P.; Naina, S.; Patel, U.; Patwa, P. Load sharing operation in N+1 UPS system by using harmonic sharing control method. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 3046–3051. [Google Scholar]
- Polinder, H.; Ferreira, J.A.; Jensen, B.B.; Abrahamsen, A.B.; Atallah, K.; McMahon, R.A. Trends in wind turbine generator systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 174–185. [Google Scholar] [CrossRef]
- Specht, T.R. Transformer magnetizing inrush currents. Electr. Eng. 1951, 70, 324. [Google Scholar] [CrossRef]
- Brunke, J.H.; Frohlich, K.J. Elimination of transformer inrush currents by controlled switching. I. Theoretical considerations. IEEE Trans. Power Del. 2001, 16, 276–280. [Google Scholar] [CrossRef]
- Dahono, P.A.; Purwadi, A. An LC filter design method for single-phase PWM inverters. In Proceedings of the 1995 International Conference on Power Electronics and Drive Systems (PEDS 95), Singapore, 21–24 February 1995; pp. 571–576. [Google Scholar]
- Kim, J.; Choi, J.; Hong, H. Output LC filter design of voltage source inverter considering the performance of controller. In Proceedings of the 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), Perth, WA, Australia, 4–7 December 2000; pp. 1659–1664. [Google Scholar]
- Kim, H.; Sul, S.K. Analysis on output LC filters for PWM inverters. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 384–389. [Google Scholar]
- Hayt, W.H.; Kemmerly, J.E.; Durbin, S.M. Engineering Circuit Analysis, 7th ed.; McGraw-Hill: New York, NY, USA, 2006; pp. 255–368. [Google Scholar]
Amount of Renewable Energy Generation (WT, PV). | Battery SoC | Diesel Generator | ESS Operation |
---|---|---|---|
Greater than the Load | SoC ≤ min SoC | Generation | Charge |
min SoC ≤ SoC ≤ set SoC | - | Charge | |
set SoC ≤ SoC | - | Charge | |
Lesser than the Load | SoC ≤ min SoC | Generation | Charge |
min SoC ≤ SoC ≤ set SoC | Generation | Charge/Discharge | |
set SoC ≤ SoC | - | Discharge |
Parameter | Value (Unit) |
---|---|
Inverter capacity (Pinv) | 100 (kW) |
Inverter switching frequency (fsw) | 4.2 (kHz) |
Number of inverters (Ninv) | 2 (Units) |
Diesel generator capacity (Pdiesel) | 100 (kW) |
Grid line to neutral voltage (Vr) | 220 (Vrms) |
Grid frequency (fgrid) | 60 (Hz) |
Maximum load (Pmax_load) | 50 (kW) |
Saturation flux density of the transformer (Bs) | 1.88 (Tesla) |
Flux density (Br) of the transformer at nominal voltage (Br) | 1.21 (Tesla) |
Transformer turn count (NT) | 32 (turn) |
Transformer cross section (A) | 0.022 (m2) |
Parameter | Value (Unit) |
---|---|
Filter inductor (Lf) | 0.3 (mH) |
Filter capacitor (Cf) | 270 (μF) |
Parallel inductor (Lp) | 20.6 (mH) |
Test Conditions | Filter Type | Load Power (Pload) | Stop Point | Test Result |
---|---|---|---|---|
1 | LCpL filter | 30 kW | vab, 0° | seamless transfer |
2 | 30 kW | vab, 45° | seamless transfer | |
3 | 30 kW | vab, 90° | seamless transfer | |
4 | 10 kW | vab, 0° | seamless transfer | |
5 | 80 kW | vab, 0° | soft-start |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-M.; Choi, K.-Y.; Jung, S.-H.; Kim, R.-Y. LCpL Filter Design and Control for Stability Improvement in a Stand-Alone Microgrid with Sub Inverter Structure. Energies 2019, 12, 2318. https://doi.org/10.3390/en12122318
Jung S-M, Choi K-Y, Jung S-H, Kim R-Y. LCpL Filter Design and Control for Stability Improvement in a Stand-Alone Microgrid with Sub Inverter Structure. Energies. 2019; 12(12):2318. https://doi.org/10.3390/en12122318
Chicago/Turabian StyleJung, Sang-Min, Ki-Young Choi, Sang-Hyuk Jung, and Rae-Young Kim. 2019. "LCpL Filter Design and Control for Stability Improvement in a Stand-Alone Microgrid with Sub Inverter Structure" Energies 12, no. 12: 2318. https://doi.org/10.3390/en12122318
APA StyleJung, S.-M., Choi, K.-Y., Jung, S.-H., & Kim, R.-Y. (2019). LCpL Filter Design and Control for Stability Improvement in a Stand-Alone Microgrid with Sub Inverter Structure. Energies, 12(12), 2318. https://doi.org/10.3390/en12122318