Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Preparation of Bacterial Anode
2.2. Cold Low-Pressure Nitrogen Plasma Treatment of Carbon-Cloth and Stainless-Steel Anode Materials
2.3. MEC Setup
2.4. Electrochemical Measurements
2.4.1. Linear Sweep Voltammetry (LSV) Measurement
2.4.2. Differential Pulse Voltammetry (DPV) Measurement
2.5. Biofilm Viability Measurements
2.5.1. Biofilm Viability Depending on Anode Materials and Plasma Treatment
2.5.2. Biofilm Viability on Anodes after 30 Days of MEC Operation
2.6. Statistics
3. Results and Discussion
3.1. LSV Measurements of the Bioanodes
3.2. DPV Measurements of the Bioanodes
3.3. Examination of the Oxidation Currents Contributed by the Planktonic Bacteria and by the Biofilm Anode in MECs Based on: CC, COMB, CCP, and COMBP
3.4. Hydrogen Formation in the MECs
3.5. Biofilm Viability Depending on Anode Materials and Plasma Treatment before MEC Construction and after MEC Operation for 30 Days
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rabaey, K.; Angenant, L.; Schröder, U.; Keller, J. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application; International Water Association (IWA): London, UK, 2010; ISBN 9781843392330. [Google Scholar]
- Bond, D.R.; Lovley, D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69, 1548–1555. [Google Scholar] [CrossRef]
- Kumar, G.G.; Sarathi, V.G.S.; Nahm, K.S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron. 2013, 43, 461–475. [Google Scholar] [CrossRef]
- Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427–4435. [Google Scholar] [CrossRef]
- Liu, H.; Hu, H.; Chignell, J.; Fan, Y. Microbial electrolysis: Novel technology for hydrogen production from biomass. Biofuels 2010, 1, 129–142. [Google Scholar] [CrossRef]
- Rozenfeld, S.; Schechter, M.; Teller, H.; Cahan, R.; Schechter, A. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells. J. Power Sources 2017, 362, 140–146. [Google Scholar] [CrossRef]
- Schechter, M.; Schechter, A.; Rozenfeld, S.; Emanuel, E.; Cahan, R. Anode Biofilm. In Technology and Application of Microbial Fuel Cells; Wang, C.T., Ed.; InTech: London, UK, 2014; pp. 57–75. [Google Scholar]
- Feng, Y.; Yang, Q.; Wang, X.; Logan, B.E. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J. Power Sources 2010, 195, 1841–1844. [Google Scholar] [CrossRef]
- Choi, C.; Cui, Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2012, 107, 522–525. [Google Scholar] [CrossRef]
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41, 3341–3346. [Google Scholar] [CrossRef]
- Aelterman, P.; Versichele, M.; Marzorati, M.; Boon, N.; Verstraete, W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99, 8895–8902. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.; Beyenal, H.; Lewandowski, Z. Scaling up Microbial Fuel Cells. Environ. Sci. Technol. 2008, 42, 7643–7648. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Niessen, J.; Schröder, U.; Rosenbaum, M.; Scholz, F. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem. Commun. 2004, 6, 571–575. [Google Scholar] [CrossRef]
- Benetton, X.D.; Navarro-Ávila, S.G.; Carrera-Figueiras, C. Electrochemical evaluation of Ti/TiO2-polyaniline Anodes for Microbial Fuel Cells using Hypersaline Microbial Consortia for Synthetic-wastewater Treatment. J. New Mater. Electrochem. Syst. 2010, 13, 1–6. [Google Scholar]
- Dumas, C.; Basseguy, R.; Bergel, A. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 2008, 53, 5235–5241. [Google Scholar] [CrossRef]
- Pocaznoi, D.; Calmet, A.; Etcheverry, L.; Erable, B.; Bergel, A. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ. Sci. 2012, 5, 9645–9652. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, P.; Cohen, A.; Teblum, E.; Nessim, G.D.; Bormasheko, E.; Schechter, A. Electrocatalytic activity of nitrogen plasma treated vertically aligned carbon nanotube carpets towards oxygen reduction reaction. Electrochem. Commun. 2014, 49, 42–46. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Svensson, S.L.; Pryjma, M.; Gaynor, E.C. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS ONE 2014, 9, e106063. [Google Scholar] [CrossRef]
- Scheuerman, T.R.; Camper, A.K.; Hamilton, M.A. Effects of substratum topography on bacterial adhesion. J. Colloid Interface Sci. 1998, 208, 23–33. [Google Scholar] [CrossRef]
- Sarjit, A.; Mei Tan, S.; Dykes, G.A. Surface modification of materials to encourage beneficial biofilm formation. AIMS Bioeng. 2015, 2, 404–422. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, S.; Feng, Y.; Merrill, M.D.; Saito, T.; Logan, B.E. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells. Environ. Sci. Technol. 2009, 43, 6870–6874. [Google Scholar] [CrossRef]
- Kolagatla, S.; Subramanian, P.; Schechter, A. Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale 2018, 10, 6962–6970. [Google Scholar] [CrossRef]
- Eliezer, Y.; Eliezer, S. The Fourth State of Matter: An Introduction to Plasma Science, 2nd ed.; Institute of Physics Publishing: Bristol, UK, 2001; ISBN 0750307404. [Google Scholar]
- Kaplan, S.L.; Rose, P.W. Plasma surface treatment of plastics to enhance adhesion. Int. J. Adhesion Adhes. 1991, 11, 109–113. [Google Scholar] [CrossRef]
- Kogelschatz, U. Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Custódio, J.; Broughton, J.; Cruz, H.; Hutchinson, A. A Review of Adhesion Promotion Techniques for Solid Timber Substrates. J. Adhes. 2008, 84, 502–529. [Google Scholar] [CrossRef]
- Mujin, S.; Baorong, H.; Yisheng, W.; Ying, T.; Weiqiu, H.; Youxian, D. The surface of carbon fibres continuously treated by cold plasma. Compos. Sci. Technol. 1989, 34, 353–364. [Google Scholar] [CrossRef]
- Yick, S.; Mai-Prochnow, A.; Levchenko, I.; Fang, J.; Bull, M.K.; Bradbury, M.; Murphy, A.B.; Ostrikov, K.; Murphya, A.B.; Ostrikov, K. The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv. 2015, 5, 5142–5148. [Google Scholar] [CrossRef]
- Rozenfeld, S.; Teller, H.; Schechter, M.; Farber, R.; Krichevski, O.; Schechter, A.; Cahan, R. Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 2018, 123, 201–210. [Google Scholar] [CrossRef]
- Bormashenko, E.; Chaniel, G.; Grynyov, R. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery. Appl. Surf. Sci. 2013, 273, 549–553. [Google Scholar] [CrossRef]
- Katz, H.; Farber, R.; Chaniel, G.; Ankar, Y.; Cohen, H.; Cahan, R. Rhamnolipid-enhanced Pseudomonas putida biofilm formation on hydrophilic surfaces with toluene as the bacterium’s sole carbon source. Int. Biodeterior. Biodegrad. 2018, 127, 87–94. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Potential sweep methods, Polarography and pulse voltammetry. In Electrochemical Methods Fundamentals and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 226–238, 286–292. ISBN 0471043729. [Google Scholar]
- Ribot-Llobet, E.; Nam, J.Y.; Tokash, J.C.; Guisasola, A.; Logan, B.E. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int. J. Hydrogen Energy 2013, 38, 2951–2956. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; He, W.; Zhang, X.; Feng, Y.; Logan, B.E. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J. Power Sources 2014, 261, 278–284. [Google Scholar] [CrossRef]
- Marsili, E.; Rollefson, J.B.; Baron, D.B.; Hozalski, R.M.; Bond, D.R. Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms. Appl. Environ. Microbiol. 2008, 74, 7329–7337. [Google Scholar] [CrossRef]
- Asensio, Y.; Montes, I.B.; Fernandez-Marchante, C.M.; Lobato, J.; Cañizares, P.; Rodrigo, M.A. Selection of cheap electrodes for two-compartment microbial fuel cells. J. Electroanal. Chem. 2017, 785, 235–240. [Google Scholar] [CrossRef]
- Penteado, E.D.; Fernandez-Marchante, C.M.; Zaiat, M.; Gonzalez, E.R.; Rodrigo, M.A. Influence of carbon electrode materialnfluence of carbon electrode material on energy. Environ. Technol. 2016, 1333–1341. [Google Scholar]
- Raschitor, A.; Soreanu, G.; Fernandez-Marchante, C.M.; Lobato, J.; Cañizares, P.; Cretescu, I.; Rodrigo, M.A. Bioelectro-Claus processes using MFC technology: Influence of co-substrate. Bioresour. Technol. 2015, 189, 94–98. [Google Scholar] [CrossRef]
- Prestigiacomo, C.; Fernandez-Marchante, C.M.; Fernández-Morales, F.J.; Cañizares, P.; Scialdone, O.; Rodrigo, M.A. New prototypes for the isolation of the anodic chambers in microbial fuel cells. Fuel 2016, 181, 704–710. [Google Scholar] [CrossRef]
- Penteado, E.D.; Fernandez-Marchante, C.M.; Zaiat, M.; Gonzalez, E.R.; Rodrigo, M.A.; Penteado, E.D.; Fernandez-Marchante, C.M.; Zaiat, M.; Gonzalez, E.R.; Rodrigo, M.A. Optimization of the performance of a microbial fuel cell using the ratio electrode-surface area / anode-compartment volume. Braz. J. Chem. Eng. 2018, 35, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Ishida, M.; Asakawa, S.; Kanamori, H.; Sasaki, H.; Ogino, A.; Katayose, Y.; Hatta, T.; Yokoyama, H. Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure. Biotechnol. Biofuels 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Cho, C. An Investigation of the compressive behavior of polymer electrode membrane fuel cell’s gas diffusion layers under different temperatures. Polymers 2018, 10, 971. [Google Scholar] [CrossRef]
- Ul Hassan, N.; Kilic, M.; Okumus, E.; Tunaboylu, B.; Soydan, A.M. Experimental determination of optimal clamping torque for AB-PEM Fuel cell. J. Electrochem. Sci. Eng. 2016, 6, 9. [Google Scholar] [CrossRef]
- Guo, K.; Prévoteau, A.; Rabaey, K. A novel tubular microbial electrolysis cell for high rate hydrogen production. J. Power Sources 2017, 356, 484–490. [Google Scholar] [CrossRef]
- Erable, B.; Bergel, A. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Bioresour. Technol. 2009, 100, 3302–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, K.; Donose, B.C.; Soeriyadi, A.H.; Prévoteau, A.; Patil, S.A.; Freguia, S.; Gooding, J.J.; Rabaey, K. Flame Oxidation of Stainless Steel Felt Enhances Anodic Biofilm Formation and Current Output in Bioelectrochemical Systems. Environ. Sci. Technol. 2014, 48, 7151–7156. [Google Scholar] [CrossRef] [PubMed]
- Tartakovsky, B.; Manuel, M.; Wang, H.; Guiot, S. High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int. J. Hydrogen Energy 2009, 34, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Kim, Y. Scalable multi-electrode microbial electrolysis cells for high electric current and rapid organic removal. J. Power Sources 2018, 391, 67–72. [Google Scholar] [CrossRef]
- Hu, H.; Fan, Y.; Liu, H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res. 2008, 42, 4172–4178. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Singh, L.; Liu, H. Revealing the impact of hydrogen production-consumption loop against efficient hydrogen recovery in single chamber microbial electrolysis cells (MECs). Int. J. Hydrogen Energy 2018, 43, 13064–13071. [Google Scholar] [CrossRef]
- Lu, L.; Ren, N.; Zhao, X.; Wang, H.; Wu, D.; Xing, D. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ. Sci. 2011, 4, 1329–1336. [Google Scholar] [CrossRef]
- Verea, L.; Savadogo, O.; Verde, A.; Campos, J.; Ginez, F.; Sebastian, P.J. Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation. Int. J. Hydrogen Energy 2014, 39, 8938–8946. [Google Scholar] [CrossRef]
- Hu, H.; Fan, Y.; Liu, H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrogen Energy 2009, 34, 8535–8542. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Ghosh, P.C.; Adeloju, S.B. Electrokinetic behaviour of conducting polymer modified stainless steel anodes during the enrichment phase in microbial fuel cells. Electrochim. Acta 2018, 287, 96–105. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.M.; Bao, S.J.; Bao, Q.L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 2007, 170, 79–84. [Google Scholar] [CrossRef]
- Thepsuparungsikul, N.; Ng, T.C.; Lefebvre, O.; Ng, H.Y. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Sci. Technol. 2014, 69, 1900–1910. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Liou, J.S.; Liu, J.L.; Chiu, Y.F.; Xu, C.H.; Chen, B.Y.; Chen, J.Z. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J. Power Sources 2016, 336, 99–106. [Google Scholar] [CrossRef]
Electrode | Current Source | 0.2 V Current (mA) | 0.4 V Current (mA) | 0.6 V Current (mA) | 0.8 V Current (mA) |
---|---|---|---|---|---|
COMBP | Full MEC | 4.6 | 5.01 | 5.593 | 6.807 |
Biofilm | 1.238 | 1.651 | 2.931 | 4.861 | |
Planktonic | 0.128 | 0.224 | 0.45 | 1.112 | |
Abiotic electrode 1 | 0.007 | 0.015 | 0.034 | 0.063 | |
COMB | Full MEC | 3.672 | 4.188 | 4.948 | 6.681 |
Biofilm | 0.635 | 0.80 | 1.154 | 2.032 | |
Planktonic | 0.08 | 0.152 | 0.426 | 0.985 | |
Abiotic electrode 1 | 0.015 | 0.069 | 0.086 | 0.097 | |
CCP | Full MEC | 3.855 | 4.221 | 4.724 | 5.273 |
Biofilm | 0.653 | 0.704 | 1.571 | 2.763 | |
Planktonic | 0.067 | 0.108 | 0.269 | 0.818 | |
Abiotic electrode 1 | 0.006 | 0.011 | 0.021 | 0.049 | |
CC | Full MEC | 2.754 | 3.15 | 3.817 | 5.270 |
Biofilm | 0.52 | 0.641 | 0.813 | 1.334 | |
Planktonic | 0.029 | 0.03 | 0.063 | 0.167 | |
Abiotic electrode 1 | 0.002 | 0.004 | 0.016 | 0.045 |
Anode | Applied Voltage (V) | HER Current Density (A m−2) | ||
---|---|---|---|---|
COMBP | 0.2 | 0.589 ± 0.046 | 0.0223 ± 0.002 | 0.0071 ± 0.0006 |
0.4 | 3.315 ± 0.106 | 0.1254 ± 0.004 | 0.0401 ± 0.0013 | |
0.6 | 5.186 ± 0.163 | 0.1961 ± 0.006 | 0.0627 ± 0.002 | |
0.8 | 6.078 ± 0.182 | 0.2299 ± 0.0069 | 0.0736 ± 0.0022 | |
COMB | 0.2 | 0.131 ± 0.011 | 0.0050 ± 0.0004 | 0.0016 ± 0.0001 |
0.4 | 1.118 ± 0.038 | 0.0423 ± 0.0014 | 0.0135 ± 0.0005 | |
0.6 | 2.590 ± 0.084 | 0.0980 ± 0.0032 | 0.0313 ± 0.0010 | |
0.8 | 3.699 ± 0.131 | 0.1399 ± 0.0049 | 0.0448 ± 0.0016 | |
CCP | 0.2 | 0.493 ± 0.045 | 0.0186 ± 0.0017 | 0.0060 ± 0.0005 |
0.4 | 2.842 ± 0.106 | 0.1075 ± 0.004 | 0.0344 ± 0.0013 | |
0.6 | 4.232 ± 0.104 | 0.1600 ± 0.004 | 0.0512 ± 0.0013 | |
0.8 | 4.986 ± 0.135 | 0.1885 ± 0.0051 | 0.0603 ± 0.0017 | |
CC | 0.2 | 0.190 ± 0.016 | 0.0072 ± 0.0006 | 0.0023 ± 0.0002 |
0.4 | 1.186 ± 0.048 | 0.0448 ± 0.0018 | 0.0143 ± 0.0006 | |
0.6 | 2.386 ± 0.074 | 0.0902 ± 0.0028 | 0.0289 ± 0.0009 | |
0.8 | 3.133 ± 0.096 | 0.1185 ± 0.0036 | 0.0379 ± 0.0012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozenfeld, S.; Ouaknin Hirsch, L.; Gandu, B.; Farber, R.; Schechter, A.; Cahan, R. Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel. Energies 2019, 12, 1968. https://doi.org/10.3390/en12101968
Rozenfeld S, Ouaknin Hirsch L, Gandu B, Farber R, Schechter A, Cahan R. Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel. Energies. 2019; 12(10):1968. https://doi.org/10.3390/en12101968
Chicago/Turabian StyleRozenfeld, Shmuel, Lea Ouaknin Hirsch, Bharath Gandu, Ravit Farber, Alex Schechter, and Rivka Cahan. 2019. "Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel" Energies 12, no. 10: 1968. https://doi.org/10.3390/en12101968
APA StyleRozenfeld, S., Ouaknin Hirsch, L., Gandu, B., Farber, R., Schechter, A., & Cahan, R. (2019). Improvement of Microbial Electrolysis Cell Activity by Using Anode Based on Combined Plasma-Pretreated Carbon Cloth and Stainless Steel. Energies, 12(10), 1968. https://doi.org/10.3390/en12101968