# Assessment of Primary Energy Conversion of a Closed-Circuit OWC Wave Energy Converter

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Models From Wave to Pneumatic Power

#### 2.1. Hydrodynamics

#### 2.2. Thermodynamics

#### 2.2.1. General Equations

#### 2.2.2. Conventional OWC Thermodynamics

#### 2.2.3. Tupperwave Device Thermodynamics

#### 2.3. Numerical Solution

## 3. Physical Modelling in the Wave Tank

#### 3.1. Physical Models Design and Fabrication

#### 3.1.1. Scaling

#### 3.1.2. Turbines

#### 3.1.3. Valves

#### 3.2. Experimental Setup and Test Plan

## 4. Results and Numerical Model Validation

#### 4.1. Correction in the Tupperwave Numerical Model

#### 4.2. Numerical Model Validation

#### 4.3. Power Performance Comparison

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Prony’s Method

## References

- Bellamy, N. The circular sea clam wave energy converter. In Hydrodynamics of Ocean Wave-Energy Utilization; Springer: Berlin/Heidelberg, Germany, 1986; pp. 69–79. [Google Scholar]
- Ryan, S.; Algie, C.; Macfarlane, G.J.; Fleming, A.N.; Penesis, I.; King, A. The Bombora wave energy converter: A novel multi-purpose device for electricity, coastal protection and surf breaks. In Proceedings of the Australasian Coasts & Ports Conference 2015: 22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian Port And Harbour Conference, Auckland, New Zealand, 15–18 September 2015; Engineers Australia and IPENZ: Auckland, New Zealand, 2015; p. 541. [Google Scholar]
- Falcão, A.F.O.; Henriques, J.C.C.; Gato, L.M.C. Self-rectifying air turbines for wave energy conversion: A comparative analysis. Renew. Sustain. Energy Rev.
**2018**, 91, 1231–1241. [Google Scholar] [CrossRef] - Lopes, B. Construction and Testing of a Double Rotor Self-Rectifying Air Turbine Model for Wave Energy Recovery Systems. Master’s Thesis, Tecnico Lisboa, Lisboa, Portugal, 2017. (In Portuguese). [Google Scholar]
- Borges, J. Three-Dimensional Design of Turbomachinery. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1986. [Google Scholar]
- Falcão, A.F.O.; Henriques, J.C.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy
**2016**, 85, 1391–1424. [Google Scholar] [CrossRef] - Masuda, Y.; McCormick, M.E. Experiences in pneumatic wave energy conversion in Japan. In Utilization of Ocean Waves—Wave to Energy Conversion; ASCE: Reston, VA, USA, 1986; pp. 1–33. [Google Scholar]
- Falcão, A.F.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev.
**2010**, 14, 899–918. [Google Scholar] [CrossRef] - Vicente, M.; Benreguig, P.; Crowley, S.; Murphy, J. Tupperwave-preliminary numerical modelling of a floating OWC equipped with a unidirectional turbine. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC), Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Penalba, M.; Ringwood, J. A review of wave-to-wire models for wave energy converters. Energies
**2016**, 9, 506. [Google Scholar] [CrossRef] - Penalba, M.; Sell, N.; Hillis, A.; Ringwood, J. Validating a wave-to-wire model for a wave energy converter—Part I: The Hydraulic Transmission System. Energies
**2017**, 10, 977. [Google Scholar] [CrossRef] - Penalba, M.; Cortajarena, J.A.; Ringwood, J. Validating a wave-to-wire model for a wave energy converter—Part II: The electrical system. Energies
**2017**, 10, 1002. [Google Scholar] [CrossRef] - Kelly, J.F.; Wright, W.M.; Sheng, W.; O’Sullivan, K. Implementation and verification of a wave-to-wire model of an oscillating water column with impulse turbine. IEEE Trans. Sustain. Energy
**2016**, 7, 546–553. [Google Scholar] [CrossRef] - Evans, D. Wave-power absorption by systems of oscillating surface pressure distributions. J. Fluid Mech.
**1982**, 114, 481–499. [Google Scholar] [CrossRef] - Evans, D. The oscillating water column wave-energy device. IMA J. Appl. Math.
**1978**, 22, 423–433. [Google Scholar] [CrossRef] - Cheng, A.H.D.; Cheng, D.T. Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem.
**2005**, 29, 268–302. [Google Scholar] [CrossRef] - Sheng, W.; Alcorn, R.; Lewis, A. Assessment of primary energy conversions of oscillating water columns. I. Hydrodynamic analysis. J. Renew. Sustain. Energy
**2014**, 6, 053113. [Google Scholar] [CrossRef] [Green Version] - Falcão, A.F.; Henriques, J.C.; Cândido, J.J. Dynamics and optimization of the OWC spar buoy wave energy converter. Renew. Energy
**2012**, 48, 369–381. [Google Scholar] [CrossRef] - Henriques, J.; Falcao, A.; Gomes, R.; Gato, L. Air turbine and primary converter matching in spar-buoy oscillating water column wave energy device. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013; p. V008T09A077. [Google Scholar]
- Taghipour, R.; Perez, T.; Moan, T. Hybrid frequency–time domain models for dynamic response analysis of marine structures. Ocean Eng.
**2008**, 35, 685–705. [Google Scholar] [CrossRef] - Cummins, W. The Impulse Response Function and Ship Motions; Technical Report; David Taylor Model Basin: Washington, DC, USA, 1962. [Google Scholar]
- Lee, C.H. WAMIT Theory Manual; Massachusetts Institute of Technology, Department of Ocean Engineering: Cambridge, MA, USA, 1995. [Google Scholar]
- Giorgi, G.; Ringwood, J.V. Consistency of viscous drag identification tests for wave energy applications. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC), Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Morison, J.; Johnson, J.; Schaaf, S. The force exerted by surface waves on piles. J. Pet. Technol.
**1950**, 2, 149–154. [Google Scholar] [CrossRef] - Falcao, A.F.O.; Justino, P.A.P. OWC wave energy devices with air flow control. Ocean Eng.
**1999**, 26, 1275–1295. [Google Scholar] [CrossRef] - Sheng, W.; Alcorn, R.; Lewis, A. On thermodynamics in the primary power conversion of oscillating water column wave energy converters. J. Renew. Sustain. Energy
**2013**, 5, 023105. [Google Scholar] [CrossRef] [Green Version] - López, I.; Pereiras, B.; Castro, F.; Iglesias, G. Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model. Appl. Energy
**2014**, 127, 105–114. [Google Scholar] [CrossRef] - Benreguig, P.; Murphy, J.; Vicente, M.; Crowley, S. Wave-to-Wire model of the Tupperwave device and performance comparison with conventional OWC. In Proceedings of the RENEW 2018 3rd International Conference on Renewable Energies Offshore, Lisbon, Portugal, 8–10 October 2018. [Google Scholar]
- Duclos, G.; Clément, A.H.; Chatry, G. Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition. Int. J. Offshore Polar Eng.
**2001**, 11, 168–175. [Google Scholar] - Sheng, W.; Alcorn, R.; Lewis, A. A new method for radiation forces for floating platforms in waves. Ocean Eng.
**2015**, 105, 43–53. [Google Scholar] [CrossRef] - MATLAB. Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010. [Google Scholar]
- Falcão, A.F.O.; Henriques, J.C.C. Model-prototype similarity of oscillating-water-column wave energy converters. Int. J. Mar. Energy
**2014**, 6, 18–34. [Google Scholar] [CrossRef] - Kurniawan, A.; Chaplin, J.; Greaves, D.; Hann, M. Wave energy absorption by a floating air bag. J. Fluid Mech.
**2017**, 812, 294–320. [Google Scholar] [CrossRef] - Falcão, A.F.O.; Henriques, J.C.C. The Spring-Like Air Compressibility Effect in OWC Wave Energy Converters: Hydro-, Thermo-and Aerodynamic Analyses. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- SOLIDWORKS. Version 2017; Dassault Systèmes SE. Available online: https://www.solidworks.com/ (accessed on 21 May 2019).
- Benreguig, P.; Thiebaut, F.; Murphy, J. Pneumatic orifice calibration, investigation into the influence of test rig characteritics on calibration results. In Proceedings of the CORE Conference, Glasgow, UK, 12–14 September 2016. [Google Scholar]
- Capricorn, HypAir Balance, Product Technical Data Sheet (ver. 001/08.2013). 2013. Available online: http://www.capricorn.pl/upload/files/20150904/napowietrzacz-hipair-balance-karta-techniczna-en.pdf (accessed on 21 May 2019).
- Benreguig, P.; Murphy, J.; Sheng, W. Model scale testing of the Tupperwave device with comparison to a conventional OWC. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE2018, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Hodgins, N.; Keysan, O.; McDonald, A.S.; Mueller, M.A. Design and testing of a linear generator for wave-energy applications. IEEE Trans. Ind. Electron.
**2012**, 59, 2094–2103. [Google Scholar] [CrossRef] - Prudell, J.; Stoddard, M.; Amon, E.; Brekken, T.K.; Von Jouanne, A. A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans. Ind. Appl.
**2010**, 46, 2392–2400. [Google Scholar] [CrossRef] - Baker, N.; Mueller, M.A. Direct drive wave energy converters. Rev. Energy Renew. Power Eng.
**2001**, 1, 1–7. [Google Scholar] - Benreguig, P.; Vicente, M.; Dunne, A.; Murphy, J. Modelling Approaches of a Closed-Circuit OWC Wave Energy Converter. J. Mar. Sci. Eng.
**2019**, 7, 23. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of the conventional Oscillating-Water-Column (OWC) and Tupperwave device concepts.

**Figure 2.**2D schematic of the full-scale conventional OWC and Tupperwave devices. HP, High-Pressure; LP, Low-Pressure.

**Figure 7.**MiniHab HypAirBalance from Capricorn used in the Tupperwave small-scale model [37].

**Figure 9.**Schematic of a mooring line. The device was moored by 3 mooring lines with 120 degrees between any two mooring lines.

**Figure 11.**Pressure drop time series across Orifice 3 of the Tupperwave device obtained by the physical model, the initial numerical model, and the corrected model in the regular waves of a 9-s period and heights of $2\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$ and $4\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$.

**Figure 12.**Pressure drop time series across Orifice 3 of the Tupperwave device obtained by the physical model, the initial numerical model, and the corrected model in the irregular sea state {${H}_{s}=3$ m; ${T}_{p}=8.5$ s}.

**Figure 13.**Pressure drop time series across Orifice 3 of the Tupperwave device obtained by the physical model and the corrected model in the irregular sea state {${H}_{s}=3$ m; ${T}_{p}=8.5$ s} with different chamber stiffness values.

**Figure 14.**Response Amplitude Operator (RAO) of the buoy and water column relative motion and their phase difference for the conventional OWC and Tupperwave device in regular waves ($H=2$ m).

**Figure 15.**Average pressure drop and volumetric flow rate across the orifice for the conventional OWC and the Tupperwave device in two-meter high regular waves.

**Figure 16.**Average pneumatic power normalized by the significant wave height squared for the conventional OWC and the Tupperwave device in irregular sea states.

**Figure 17.**Pneumatic power time series for the conventional OWC and the Tupperwave device in the irregular sea state {${H}_{s}=3$ m; ${T}_{p}=7.1$ s}.

**Figure 18.**Average power absorbed from the waves ${P}_{abs}$ and pneumatic power available to the turbine ${P}_{avail}$ by the conventional OWC and the Tupperwave device in 2 and 4 m-high regular waves.

Model Scale | Full Scale | |
---|---|---|

Total mass (kg) | 58.4 | $817\times {10}^{3}$ |

Distance device bottom, COG(m) | 0.892 | 21.49 |

Distance device bottom, COB(m) | 0.961 | 23.16 |

Ixx ($\mathbf{kg}\xb7{\mathbf{m}}^{\mathbf{2}}$) | 23 | $1.87\times {10}^{8}$ |

Iyy ($\mathbf{kg}\xb7{\mathbf{m}}^{\mathbf{2}}$) | 23.5 | $1.91\times {10}^{8}$ |

Izz ($\mathbf{kg}\xb7{\mathbf{m}}^{\mathbf{2}}$) | 2 | $1.62\times {10}^{7}$ |

Model Scale | Full Scale | ||||
---|---|---|---|---|---|

Orifice | Diameter (mm) | ${\mathbf{k}}_{\mathbf{t}}$ ($\mathbf{Pa}\xb7{\mathbf{s}}^{\mathbf{2}}\xb7{\mathbf{m}}^{-\mathbf{6}}$) | $\alpha \mathbf{A}$ (${\mathbf{m}}^{\mathbf{2}}$) | ${\mathbf{k}}_{\mathbf{t}}$ ($\mathbf{Pa}\xb7{\mathbf{s}}^{\mathbf{2}}\xb7{\mathbf{m}}^{-\mathbf{6}}$) | $\alpha \mathbf{A}$ (${\mathbf{m}}^{\mathbf{2}}$) |

OWC1 | 22.6 | $7.10\times {10}^{6}$ | $2.94\times {10}^{-4}$ | 21.1 | $1.71\times {10}^{-1}$ |

OWC2 | 20.6 | $10.4\times {10}^{6}$ | $2.42\times {10}^{-4}$ | 30.9 | $1.41\times {10}^{-1}$ |

OWC3 | 17.5 | $19.6\times {10}^{6}$ | $1.77\times {10}^{-4}$ | 58.3 | $1.03\times {10}^{-1}$ |

T1 | 11.5 | $0.70\times {10}^{8}$ | $9.33\times {10}^{-5}$ | 209 | $5.42\times {10}^{-2}$ |

T2 | 9.2 | $1.86\times {10}^{8}$ | $5.74\times {10}^{-5}$ | 552 | $3.33\times {10}^{-2}$ |

T3 | 7 | $4.85\times {10}^{8}$ | $3.55\times {10}^{-5}$ | 1439 | $2.06\times {10}^{-2}$ |

**Table 3.**Pearson correlation coefficient between $\Delta {P}_{t}$ time series obtained physically and numerically for the various irregular sea states.

Sea State | Pearson Correlation Coefficient (-) | ||
---|---|---|---|

${\mathit{H}}_{\mathit{s}}$ (m) | ${\mathit{T}}_{\mathit{p}}$ (s) | Initial Model | Corrected Model $\mathit{C}=\mathbf{8}.\mathbf{3}\times {\mathbf{10}}^{-\mathbf{5}}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{3}\xb7{\mathrm{Pa}}^{-1}$ |

2 | 5.7 | 0.72 | 0.85 |

3 | 7.1 | 0.68 | 0.93 |

3 | 8.5 | 0.69 | 0.93 |

5 | 8.5 | 0.65 | 0.94 |

3 | 10.6 | 0.70 | 0.94 |

5 | 10.6 | 0.65 | 0.93 |

5 | 12.7 | 0.62 | 0.93 |

3 | 14.1 | 0.70 | 0.86 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Benreguig, P.; Pakrashi, V.; Murphy, J.
Assessment of Primary Energy Conversion of a Closed-Circuit OWC Wave Energy Converter. *Energies* **2019**, *12*, 1962.
https://doi.org/10.3390/en12101962

**AMA Style**

Benreguig P, Pakrashi V, Murphy J.
Assessment of Primary Energy Conversion of a Closed-Circuit OWC Wave Energy Converter. *Energies*. 2019; 12(10):1962.
https://doi.org/10.3390/en12101962

**Chicago/Turabian Style**

Benreguig, Pierre, Vikram Pakrashi, and Jimmy Murphy.
2019. "Assessment of Primary Energy Conversion of a Closed-Circuit OWC Wave Energy Converter" *Energies* 12, no. 10: 1962.
https://doi.org/10.3390/en12101962