An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids
Abstract
:1. Introduction
2. A Method for Remote Estimation of Energy Meter Adjustment Gain
2.1. Method Description and Assumptions
- It is possible to temporarily (1 s) switch on and off a small active power load (stimulus) at the location of RemW,
- Synchronized active power readings can be acquired by RefW and RemW during stimulus switching and delivered to RefW via a communication channel,
- Change of power losses and voltage drop due to stimulus state (on or off) are negligible considering 1% target error of the adjustment gain estimation,
- All network loads measured by RefW and RemW are constant during the acquisition of active powers.
2.2. Analytical Expression of Relative Error
3. Research Methodology
3.1. Objective Functions, Constraints and Bounds of Independent Parameters
3.2. Digital Optimization Techniques
3.3. Simulation Settings
3.3.1. Electrical Parameters Calculation
3.3.2. Nonlinear Inequality Constraints
3.3.3. Parameter Bounds
3.3.4. Initial Points Selection
4. Results and Discussion
4.1. The Network Parameters Corresponding to the Worst-Case Error
4.2. Requirements upon Computational Resources
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Abbreviations | |
GA | genetic algorithms |
PS | pattern search |
DS | direct search |
FMINCON | function for nonlinear constrained optimization [24] |
WCE | worst-case error |
RefW | reference wattmeter |
RemW | remote wattmeter |
HES | Hall effect sensors |
SW | switch |
SW1 | switch in position 1 |
SW2 | switch in position 2 |
SW3 | switch in position 3 |
Variables | |
kp | power adjustment gain |
kp* | estimate of power adjustment gain |
δkp | relative error of the wattmeter adjustment gain |
P | active power (W) |
P* | the indication of active power by the wattmeter under gain adjustment RemW (W) |
ΔP | active power loss (W) |
active power loss change due to adjustment load connection (W) | |
active power of the ith load change due to the kth voltage change (W) | |
Q | reactive power (Var) |
S | complex power (VA) |
U | voltage (V) |
ΔU | voltage difference (V) |
I | current (A) |
Y | admittance (S) |
Z | impedance (Ω) |
R | resistance (Ω) |
X | reactance (Ω) |
G | conductance (S) |
B | susceptance (S) |
L | inductance (H) |
C | capacitance (F) |
load power factor | |
vector of input parameters | |
H | vector of constraints quantities |
wiring current constraint | |
active load constraint | |
Subscripts and Superscripts | |
r | reference wattmeter |
m | remote wattmeter |
W | wiring parameter |
S | network regime with a gain adjustment load connected or parameter/quantity of the corresponding network |
l | load parameter |
L | inductive |
C | capacitive |
max | maximum |
min | minimum |
N | nominal |
* | indication/estimate containing an error |
parameter/quantity corresponding to the maximum error case |
References
- Seppa, H. Method and System for the Calibration of Meters. WIPO Patent 063180 A1, 6 July 2007. [Google Scholar]
- Beaufort Samson, G.; Levasseur, M.; Gagnon, G.; Gagnon, F. Auto-calibration of Hall effect sensors for home energy consumption monitoring. Electron. Lett. 2014, 50, 403–405. [Google Scholar] [CrossRef]
- Nakutis, Ž.; Saunoris, M.; Ramanauskas, R.; Daunoras, V.; Lukočius, R.; Marčiulionis, P. A Method for Remote Estimation of Wattmeter’s Adjustment Gain. IEEE Trans. Instrum. Meas. 2018, 1–9. [Google Scholar] [CrossRef]
- Nakutis, Ž.; Saunoris, M.; Daunoras, V.; Lukočius, R.; Marčiulionis, P.; Deltuva, R.; Ramanauskas, R. A Short-term Power Fluctuations Averaging in Low Voltage AC Grid. In Proceedings of the IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Liverpool, UK, 20–22 September 2017; pp. 1–6. [Google Scholar]
- Amicone, D.; Bernieri, A.; Ferrigno, L.; Laracca, M. A smart add-on device for the remote calibration of electrical energy meters. In Proceedings of the Instrumentation and Measurement Technology Conference, Singapore, 5–7 May 2009; pp. 1599–1604. [Google Scholar]
- Femine, A.D.; Gallo, D.; Landi, C.; Luiso, M. Advanced Instrument for Field Calibration of Electrical Energy Meters. IEEE Trans. Instrum. Meas. 2009, 58, 618–625. [Google Scholar] [CrossRef]
- Jebroni, Z.; Chadli, H.; Tidhaf, B. Remote calibration system of a smart electrical energy meter. J. Electr. Syst. 2017, 13, 806–823. [Google Scholar]
- Egarter, D.; Sobe, A.; Elmenreich, W. Evolving Non-Intrusive Load Monitoring; LNCS 7835; Springer: Heidelberg, Germany, 2013; pp. 182–191. [Google Scholar]
- Lu, H.; Xin, W.; Hui, B.; Bing, Q.; Aixia, Z. A residential load identification algorithm based on periodogram for non-intrusive load monitoring. In Proceedings of the China International Conference on Electricity Distribution (CICED), Xi’an, China, 10–13 August 2016; pp. 1–4. [Google Scholar]
- Li, H.D.; Dick, S. Residential Household Non-Intrusive Load Monitoring via Graph-Based Multi-Label Semi-Supervised Learning. IEEE Trans. Smart Grid 2018. [Google Scholar] [CrossRef]
- Tabatabaei, S.M.; Dick, S.; Xu, W. Toward Non-Intrusive Load Monitoring via Multi-Label Classification. IEEE Trans. Smart Grid 2017, 8, 26–40. [Google Scholar] [CrossRef]
- Agyeman, K.; Han, S.; Han, S. Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System. Energies 2015, 8, 9029–9048. [Google Scholar] [CrossRef] [Green Version]
- Nagi, J.; Yap, K.S.; Tiong, S.K.; Ahmed, S.K.; Mohammad, A.M. Detection of abnormalities and electricity theft using genetic Support Vector Machines. In Proceedings of the TENCON 2008—2008 IEEE Region 10 Conference, Hyderabad, India, 10–21 November 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Papantoniou, S.; Kolokotsa, D.; Kalaitzakis, K. Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system. Energy Build. 2015, 98, 45–55. [Google Scholar] [CrossRef]
- Ullah, I.; Kim, D. An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes. Energies 2017, 10, 1818. [Google Scholar] [CrossRef]
- Fan, G.; Peng, L.; Zhao, X.; Hong, W. Applications of Hybrid EMD with PSO and GA for an SVR-Based Load Forecasting Model. Energies 2017, 10, 1713. [Google Scholar] [CrossRef]
- Zheng, D.; Shi, M.; Wang, Y.; Eseye, A.; Zhang, J. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy. Energies 2017, 10, 1988. [Google Scholar] [CrossRef]
- Asnawi, Y.; Hasannuddin, T. Voltage Constrained Optimal Power Flow Based Using Genetic Algorithm. J. Kejuruteraan 2015, 27, 9–14. [Google Scholar]
- Stojanović, M.; Tasić, D.; Ristić, A. Optimal Allocation of Distribution Automation Devices in Medium Voltage Network. Electron. Electr. Eng. 2013, 19, 9–15. [Google Scholar] [CrossRef]
- Bhullar, S.; Ghosh, S. Optimal Integration of Multi Distributed Generation Sources in Radial Distribution Networks Using a Hybrid Algorithm. Energies 2018, 11, 628. [Google Scholar] [CrossRef]
- Marzband, M.; Sumper, A.; Domínguez-García, J.S.; Gumara-Ferret, R. Experimental Validation of a Real Time Energy Management System for Microgrids in Islanded Mode Using a Local Day-Ahead Electricity Market and MINLP. Energy Convers. Manag. 2013, 76, 314–322. [Google Scholar] [CrossRef]
- Kumar, A.; Das, B.; Sharma, J. Genetic Algorithm-Based Meter Placement for Static Estimation of Harmonic Sources. IEEE Trans. Power Deliv. 2005, 20, 1088–1096. [Google Scholar] [CrossRef]
- Köse, E.; Abaci, K.; Kizmaz, H.; Aksoy, S.; Yalҫin, M. Sliding Mode Control Based on Genetic Algorithm for WSCC Systems Include of SVC. Electron. Electr. Eng. 2013, 19, 19–25. [Google Scholar] [CrossRef]
- Mathworks Documentation. Available online: https://se.mathworks.com/help/optim/ug/fmincon.html (accessed on 7 May 2018).
- Huang, P. Reactive Power Optimization Analysis of 35KV Regional Power Grid Based on the Genetic Algorithm. Adv. Mater. Res. 2014, 1055, 271–274. [Google Scholar] [CrossRef]
- Mathworks Documentation. Available online: https://se.mathworks.com/help/gads/patternsearch.html (accessed on 12 December 2018).
- MathWorks. Global Optimization Toolbox User’s Guide R2017b; The MathWorks, Inc.: Natick, MA, USA, 2017; pp. 1–18. [Google Scholar]
- Huang, W.; Yao, K.; Wu, C.; Chang, Y.; Lee, Y.; Ho, Y. A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids. Energies 2016, 9, 976. [Google Scholar] [CrossRef]
- Huang, W.; Yao, K.; Wu, C. Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid. Energies 2014, 7, 8355–8373. [Google Scholar] [CrossRef] [Green Version]
- Electrical Installation Guide According to IEC International Standards 2016. Rueil-Malmaison (BP 50604, 92506 Cedex): Schneider Electric. Available online: https://www.schneider-electric.com/en/work/products/product-launch/electrical-installation-guide/ (accessed on 12 December 2018).
Method | Load Type | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GA | R | 1 | 1 | 52900 | 0.95 | 0.05 | 0.002 | 0.2 | 229.9 | 0.02 | 1 | 0 | 0.019 |
PS | R | 1 | 1 | 52900 | 0.95 | 0.05 | 0.002 | 0.2 | 229.9 | 0.02 | 1 | 0 | 0.019 |
FMINCON | R | 1 | 1 | 52889 | 0.95 | 0.05 | 0.002 | 0.2 | 229.9 | 0.02 | 1 | 0 | 0.019 |
GA | RL | 0.9 | 0.9 | 16.4 | 0.95 | 12.1 | 138.9 | 5.8 | 219.5 | 4.6 | 2379 | 1152 | 0.0715 |
GA | RC | 0.9 | 0.9 | 16.4 | 0.95 | 12.1 | 138.8 | 5.8 | 219.5 | 4.6 | 2377 | 1152 | 0.0811 |
PS | RL | 0.9 | 0.9 | 16.4 | 0.95 | 12.1 | 138.9 | 5.8 | 219.5 | 4.6 | 2378 | 1152 | 0.0715 |
FMINCON | RL | 0.9 | 0.9 | 16.4 | 0.95 | 12.1 | 138.9 | 5.8 | 219.5 | 4.6 | 2378 | 1152 | 0.0715 |
GA | RL | 0.7 | 0.7 | 12.9 | 0.95 | 12.1 | 138.9 | 7.4 | 221.7 | 3.6 | 1869 | 1907 | 0.2293 |
GA | RC | 0.7 | 0.7 | 12.9 | 0.95 | 12.1 | 138.7 | 7.4 | 221.7 | 3.6 | 1868 | 1906 | 0.2416 |
PS | RL | 0.7 | 0.7 | 12.9 | 0.95 | 12.1 | 138.9 | 7.4 | 221.7 | 3.6 | 1869 | 1907 | 0.2293 |
FMINCON | RL | 0.7 | 0.7 | 12.9 | 0.95 | 12.1 | 138.9 | 7.4 | 221.7 | 3.6 | 1869 | 1907 | 0.2293 |
GA | RL | 0.5 | 0.5 | 9.3 | 0.95 | 12.1 | 138.9 | 10.3 | 223.9 | 2.7 | 1350 | 2337 | 0.35 |
GA | RC | 0.5 | 0.5 | 9.3 | 0.95 | 12.1 | 138.6 | 10.3 | 223.9 | 2.7 | 1348 | 2335 | 0.3606 |
PS | RL | 0.5 | 0.5 | 9.3 | 0.95 | 12.1 | 138.9 | 10.3 | 223.9 | 2.7 | 1349 | 2337 | 0.35 |
FMINCON | RL | 0.5 | 0.5 | 9.3 | 0.95 | 12.1 | 138.9 | 10.3 | 223.9 | 2.7 | 1349 | 2337 | 0.35 |
GA | RL | 0.3 | 0.3 | 5.6 | 0.95 | 12.1 | 138.9 | 17.0 | 226.1 | 1.7 | 818 | 2602 | 0.432 |
GA | RC | 0.3 | 0.3 | 5.6 | 0.95 | 12.1 | 138.6 | 17.0 | 226.1 | 1.7 | 817 | 2599 | 0.439 |
PS | RL | 0.3 | 0.3 | 5.6 | 0.95 | 12.1 | 138.9 | 17.0 | 226.1 | 1.7 | 818 | 2602 | 0.4319 |
FMINCON | RL | 0.3 | 0.3 | 5.6 | 0.95 | 12.1 | 138.9 | 17.0 | 226.1 | 1.7 | 818 | 2602 | 0.4319 |
GA | RL | 0.1 | 0.10 | 1.9 | 0.95 | 12.1 | 138.9 | 50.0 | 228.4 | 0.7 | 278 | 2743 | 0.4747 |
GA | RC | 0.1 | 0.1 | 1.9 | 0.95 | 12.1 | 138.6 | 50.3 | 228.4 | 0.7 | 275 | 2740 | 0.477 |
PS | RL | 0.1 | 0.12 | 2.3 | 0.95 | 12.1 | 138.9 | 40.9 | 228.1 | 0.8 | 340 | 2733 | 0.4717 |
FMINCON | RL | 0.1 | 0.1 | 1.9 | 0.95 | 12.1 | 138.9 | 50.4 | 228.4 | 0.7 | 276 | 2743 | 0.4747 |
1 | 1 | 52900 | 0.95 | 0.05 | 0.0009 | 0.1 | 229.98 | 0.01 | 1 | 0 | 0.0095 |
0.9 | 0.9 | 8.2 | 0.48 | 24.2 | 277.8 | 5.8 | 219.5 | 4.6 | 4765 | 2308 | 0.081 |
0.7 | 0.7 | 6.4 | 0.48 | 24.2 | 277.8 | 8.1 | 221.7 | 3.6 | 3438 | 3508 | 0.24 |
0.5 | 0.5 | 4.6 | 0.48 | 24.2 | 277.8 | 10.3 | 223.9 | 2.7 | 2702 | 4680 | 0.36 |
0.3 | 0.3 | 2.8 | 0.48 | 24.2 | 277.8 | 17.0 | 226.1 | 1.7 | 1638 | 5208 | 0.44 |
0.1 | 0.1 | 1.0 | 0.48 | 24.2 | 277.8 | 50.1 | 228.4 | 0.7 | 554 | 5488 | 0.48 |
1 | 1 | 52900 | 0.34 | 0.05 | 0.0009 | 0.09 | 229.98 | 0.007 | 1 | 0 | 0.0068 |
0.9 | 0.9 | 5.9 | 0.34 | 33.8 | 388.9 | 5.8 | 219.5 | 4.6 | 6674 | 3232 | 0.084 |
0.7 | 0.7 | 4.6 | 0.34 | 33.8 | 388.9 | 7.4 | 221.7 | 3.6 | 5243 | 5349 | 0.24 |
0.5 | 0.5 | 3.3 | 0.34 | 33.8 | 388.9 | 10.3 | 223.9 | 2.7 | 3783 | 6553 | 0.36 |
0.3 | 0.3 | 2 | 0.34 | 33.8 | 388.9 | 17.0 | 226.1 | 1.7 | 2293 | 7292 | 0.44 |
0.1 | 0.1 | 0.7 | 0.34 | 33.8 | 388.9 | 50.4 | 228.4 | 0.7 | 772 | 7684 | 0.49 |
1 | 1 | 52900 | 0.24 | 0.05 | 0.0006 | 0.06 | 229.99 | 0.005 | 1 | 0 | 0.0048 |
0.9 | 0.9 | 4.1 | 0.24 | 48.3 | 555 | 5.8 | 219.5 | 4.6 | 9537 | 4619 | 0.086 |
0.7 | 0.7 | 3.2 | 0.24 | 48.3 | 555 | 7.4 | 221.7 | 3.6 | 7493 | 7644 | 0.24 |
0.5 | 0.5 | 2.3 | 0.24 | 48.3 | 555 | 10.3 | 223.9 | 2.7 | 5406 | 9363 | 0.36 |
0.3 | 0.3 | 1.4 | 0.24 | 48.3 | 555 | 17.0 | 226.2 | 1.7 | 3276 | 10419 | 0.45 |
0.1 | 0.1 | 0.5 | 0.24 | 48.3 | 555 | 50.3 | 228.4 | 0.7 | 1104 | 10978 | 0.49 |
Search Method | Population Size (GA) or Number of Initial Points (PS) | Computation Time (s) | |
---|---|---|---|
GA applying analytical expressions | 0.07148 | 20,000 | 227.3 |
PS applying analytical expressions | 0.07146 | 200 | 66.1 |
FMINCON applying analytical expressions | 0.07146 | 40 | 22.73 |
GA applying Simulink model | 0.07137 | 200 | 13,494.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukočius, R.; Nakutis, Ž.; Daunoras, V.; Deltuva, R.; Kuzas, P.; Račkienė, R. An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids. Energies 2019, 12, 37. https://doi.org/10.3390/en12010037
Lukočius R, Nakutis Ž, Daunoras V, Deltuva R, Kuzas P, Račkienė R. An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids. Energies. 2019; 12(1):37. https://doi.org/10.3390/en12010037
Chicago/Turabian StyleLukočius, Robertas, Žilvinas Nakutis, Vytautas Daunoras, Ramūnas Deltuva, Pranas Kuzas, and Roma Račkienė. 2019. "An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids" Energies 12, no. 1: 37. https://doi.org/10.3390/en12010037
APA StyleLukočius, R., Nakutis, Ž., Daunoras, V., Deltuva, R., Kuzas, P., & Račkienė, R. (2019). An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids. Energies, 12(1), 37. https://doi.org/10.3390/en12010037