An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology
Abstract
:1. Introduction
- About one billion electric vehicles, comprising above 40% of the total LDV stock, which is trajectory 2DS.
- More than 400 million electric two-wheeler vehicle will be produced in 2030.
- All of the cars will be electric two-wheeler vehicles by 2050.
- The EVI members are comprised of 16 governments today.
- Between 2014 and 2015, new enrolment of EV (BEV, BEV) increased by 70% (more than 550 K sold worldwide)
- The annual sale list of 2015 in comparison to 2014, increased more than 75% EVs in these countries: France, Germany, Korea, Norway, Sweden, The UK and India.
- The cost of the PHEV batteries decreased from USD 1000/kWh in 2008 to USD 268/kWh in 2015, and the target for 2022 is USD 125/kWh.
- The density of the PHEV batteries increased from 60 Wh/L in 2008 to 295 Wh/L in 2015, and the target for 2022 is 400 Wh/L.
2. Energy Scenarios
3. Storage Systems in V2G Technology
3.1. Batteries Use on the Electric Vehicles
3.1.1. Mechanical Strike Influence
3.1.2. Temperature Stability Significance
3.1.3. Control on the Storage Systems
3.1.4. Longevity of the EVs’ Batteries
3.2. Charging System
Potentials to Build Charging Stations for Renewable Energies
- ✓
- Low GHG emissions on the supply and demand side
- ✓
- Strong reduction of grid shock
- ✓
- Reduction of energy cost to help the economy of the home and office
- ✓
- Reduction of fossil, coal and nuclear energy contribution
4. Infrastructure
4.1. Strategy
4.1.1. Pricing of Energy
4.1.2. Control System Communications
4.2. Grid Modelling
4.2.1. Frequency Control
4.2.2. System Integration
5. Conclusions
- ✓
- The life/charge cycle, energy density and safety problems are solved with some polymer types of lithium batteries.
- ✓
- The problems of the infrastructure of the grid can be detected quickly with a synchronized communication system.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
GHG | Green House Gas |
ICE | Internal Combustion Engine |
EV | Electric Vehicle |
PHEV | Plug-in Hybrid Electric Vehicle |
HEV | Hybrid Electric Vehicle |
V2G | Vehicle-to-Grid |
G2V | Grid-to-Vehicle |
GDR | Generalized Demand-side Resources |
IEA | International Energy Agency |
UNFCCC | United Nations Framework Convention on Climate Change |
IEC | International Electro technical Commission |
SAE | Society of Automotive Engineers |
GTCO2 | Giga Tonnes of Carbon dioxide |
2DS | 2 °C Scenario |
6DS | 6 °C Scenario |
W h/L | Watt hour per liter |
TWh | Terra Watt hours |
KWh | Kilo Watt hour |
EVI | Electric Vehicles Initiative |
AC | Alternating Current |
DC | Direct Current |
CHP | Combined Heat and Power |
CHAdeMO | CHArge de Move |
SOC | State of Charge |
AM | Automotive Mode |
LNG | Liquefied Natural Gas |
LPG | Liquefied Petroleum Gas |
IEEE: | Institute of Electrical and Electronics Engineers |
WAN | Wide Area Network |
HAN | Home Area Network |
NAN | Neighborhood Area Network |
SCADA | Supervisory Control and Data Acquisition |
DSL | Digital Subscriber Line |
GSM | Global System for Mobile Communications |
GPS | Global Positioning System |
THD | Total Harmonic Distortion |
VPP | Virtual Power Plant |
WPP | Wind Power Plant |
LDV | Light-Duty Vehicle |
Fe | Iron |
Li | Lithium |
Li-ion | Lithium-ion |
NiCd | Nickel–Cadmium |
NaS | Sodium–Sulfur |
ZnBr | Zinc–Bromine |
LiFePO4 | Lithium Iron Phosphate Oxide |
LiCoO4 | Lithium Cobalt Oxide |
LiMn2O4 | Lithium ion Manganese Oxide |
NMC | LiNiMnCoO2 |
DOD | Depth of Charge |
SM | Storage Mode |
CNG | Compressed Natural Gas |
HAN | Home Area Network |
NAN | Neighborhood Area Network |
SCADA | Supervisory Control and Data Acquisition |
DSL | Digital Subscriber Line |
GSM | Global System for Mobile Communications |
GPS | Global Positioning System |
References
- International Energy Agency, Global EV Outlook. Available online: https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf (accessed on 28 May 2016).
- Erdogan, N.; Erden, F.; Kisacikoglu, M. A fast and efficient coordinated vehicle-to-grid discharging control scheme for peak shaving in power distribution system. J. Mod. Power Syst. Clean Energy 2018, 6, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Kisacikoglu, M.C.; Erden, F.; Erdogan, N. Distributed Control of PEV Charging Based on Energy Demand Forecast. IEEE Trans. Ind. Inform. 2018, 14, 332–341. [Google Scholar] [CrossRef]
- Sustainable Energy Authority of Ireland. Available online: http://www.seai.ie/Publications/Statistics_Publications/SEAI_2050_Energy_Roadmaps/Electric_Vehicle_Roadmap.pdf (accessed on 27 May 2016).
- Energy Efficiency & Renewable Energy. The Transforming Mobility Ecosystem: Enabling an Energy-Efficient Future. Available online: https://www.energy.gov/sites/prod/files/2017/01/f34/The%20Transforming%20Mobility%20Ecosystem-Enabling%20an%20Energy%20Efficient%20Future_0117_1.pdf (accessed on 29 January 2017).
- Energy Scenarios for 2030. Available online: https://www.energinet.dk/-/media/Energinet/Analyser-og-Forskning-RMS/Dokumenter/Analyser/Energy-Scenarios-for-2030-UK-Version.PDF pdf (accesssed on 4 October 2016).
- Baumhefner, M.; Hwang, R. How Utilities Can Accelerate the Market for Electric Vehicles; Technical Report for The Natural Resources Defense Council; NRDC: New York, NY, USA; Washington, DC, USA; Los Angeles, CA, USA; San Francisco, CA, USA; Chicago, IL, USA; Beijing, China, 2016. [Google Scholar]
- Combined Heat and Power Basics. Available online: https://energy.gov/eere/amo/combined-heat-and-power-basics (accessed on 29 November 2017).
- Shirazi, Y.; Carr, E.; Knapp, L. A cost-benefit analysis of alternatively fueled buses with special considerations for V2G technology. Energy Policy 2015, 87, 591–603. [Google Scholar] [CrossRef]
- Irean. Road Transport: The Cost of Renewable Solutions; Irena Publication: Abu Dhabi, UAE, 2013. [Google Scholar]
- Electric Power Research Institute. Environmental Assessment of Plug-In Hybrid Electric Vehicles. Available online: https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/EPRI-NRDC_PHEV_GHG_report.pdf (accessed on 25 July 2017).
- Heinen, S.; Elzinga, D.; Kim, S.K.; Ikeda, Y. Impact of Smart Grid Technologies on Peak Load to 2050. Available online: https://www.iea.org/publications/freepublications/publication/smart_grid_peak_load.pdf (accessed on 2 August 2011).
- Technology Roadmap. Available online: https://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf (accessed on 27 April 2011).
- Lewis, M.F.; Amr, S.; Francisco, B.; Alessandra, S.; Deger, S. Electric Vehicles: Technology Brief; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Maria, L.T.; Michael, L.A. A review of the development of smart grid technologies. Renew. Sustain. Energy Rev. 2016, 59, 710–725. [Google Scholar]
- Mathiesen, B.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; Hvelplun, F. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Hooman, F.; Christopher, N.-H.D.; Jose, A.P.-O. An integrated supply-demand model for the optimization of energy. J. Clean. Prod. 2016, 114, 268–285. [Google Scholar]
- Michael, S.; Ontje, L.; Jörg, B.; Martin, T. Decentralized control of units in smart grids for the support of renewable energy supply. Environ. Impact Assess. Rev. 2015, 52, 40–52. [Google Scholar]
- John, B.; Margaret, O.-M. Modelling charging profiles of electric vehicles based on real-world electric vehicle charging data. Sustain. Cities Soc. 2016, 26, 203–216. [Google Scholar]
- Alexander, S.; Christoph, M.F.; Sebastian, G. Quantifying load flexibility of electric vehicles for renewable energy. Appl. Energy 2015, 151, 335–344. [Google Scholar]
- Pero, P.; Goran, G.; Goran, K.; Neven, D. Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles. Appl. Energy 2016, 184, 1493–1507. [Google Scholar]
- Guilherme, A.D.; Nivalde, J.-C.; Roberto, B.; Rubens, R.; Alexandre, L. Prospects for the Brazilian electricity sector in the 2030s: Scenarios and guidelines for its transformation. Renew. Sustain. Energy Rev. 2017, 68, 997–1007. [Google Scholar]
- Shang, D.; Sun, G. Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss? Energy Policy 2016, 95, 402–410. [Google Scholar] [CrossRef]
- Thomas, K.; Patrick, J.; Wolf, F. Solar energy storage in germany households: profitability, load changes and flexibility. Energy Policy 2016, 98, 520–532. [Google Scholar]
- Arif, A.I.; Babar, M.; Ahamed, T.P.I.; Al-Ammar, E.A.; Nguyen, P.H.; Kamphuis, I.G.R.; Malik, N.H. Online scheduling of plug-in vehicle in dynamic pricing schemes. Sustain. Energy Grid Netw. 2016, 7, 25–36. [Google Scholar] [CrossRef]
- João, S.; Mohammad, A.F.G.; Nuno, B.; Zita, V. A stochastic model for energy resources management considering demand response in smart grids. Electr. Power Syst. Res. 2017, 143, 599–610. [Google Scholar]
- Lance, N.; Benjamin, K.S. Why did better placeFail?: Rangeanxiety, interpretive flexibility, and electric vehicle promotion in Denmarkand Israel. Energy Policy 2016, 94, 377–386. [Google Scholar]
- Joy, C.M.; Saurabh, S.; Arobinda, G. Mobility aware scheduling for imbalance reduction through charging coordination of electric vehicles in smart grid. Pervasive Mob. Comput. 2015, 21, 104–118. [Google Scholar]
- Eva, N.; Floortje, A. How is value created and captured in smart grids? A review of the literature and ananalysis of pilot projects. Renew. Sustain. Energy Rev. 2016, 53, 629–638. [Google Scholar]
- Sousa, T.; Soares, T.; Morais, H.; Castro, R.; Vale, Z. Simulated annealing to handle energy and ancillary services joint management considering electric vehicles. Electr. Power Syst. Res. 2016, 136, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Shen, J.; Wang, X.; Jiang, C. From controllabe loads to generalized demand-side resources: A review on developments of demand-side resources. Renew. Sustain. Energy Rev. 2016, 53, 936–944. [Google Scholar]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O. Mitigation of wind power intermittency: Storage technology approach. Renew. Sustain. Energy Rev. 2015, 44, 447–456. [Google Scholar] [CrossRef]
- Lee, J.; Park, G.-L. Dual battery managment for renewable energy integration in EV charging station. Neurocomputing 2015, 148, 181–186. [Google Scholar] [CrossRef]
- Zhao, H.R.; Wu, Q.W.; Hu, S.J.; Xu, H.H.; Claus, N.R. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Opitz, A.; Badami, P.; Shen, L.; Vignarooban, K.; Kannan, A.M. Can Li-ion batteries be the panacea for automotive application. Renew. Sustain. Energy Rev. 2017, 68, 685–692. [Google Scholar] [CrossRef]
- United Nations. Transport of Dangerous Goods, 5th ed.; United Nations Publication: New York, NY, USA, 2009.
- Doughty, D.H. Vehicle Battery Safety Roadmap Guidance; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Hu, X.S.; Clara, M.M.; Yang, Y.L. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach. Mech. Syst. Signal. Process. 2017, 87, 4–16. [Google Scholar] [CrossRef]
- Branimir, S.; Joško, D. A novel model of electric vehicle fleet aggregate battery for energy planning studies. Energy 2015, 92, 444–455. [Google Scholar]
- Kate, E.F.; Brian, T.; Li, Z.; Brendan, S.; Scott, S. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards. J. Power Sources 2016, 336, 63–74. [Google Scholar]
- Alexander, F.; Wladislaw, W.; Andrea, M.; Dirk, U. Critical review of on-board capacity estimation techniques for lithiumion batteries in electric and hybrid electric vehicles. J. Power Sources 2015, 281, 114–130. [Google Scholar]
- Le, D.; Cheng, C.-C. Energy savings by energy managment system: A review. Renew. Sustain. Syst. 2016, 56, 760–777. [Google Scholar]
- Hsin, W.; Edgar, L.-C.; Evan, T.R.; Clinton, S.W. Mechanical abuse simulation and thermal runaway risks of large format Li-ion batteries. J. Power Sources 2017, 342, 913–920. [Google Scholar]
- Cheng, L.; Aihua, T. Simplification and efficient simulation of electrochemical model for Li-ion battery in EVs. Energy Procedia 2016, 104, 68–73. [Google Scholar]
- National Transportation Safety Board. Available online: https://www.ntsb.gov/investigations/AccidentReports/Reports/AIR1401.pdf (accessed on 8 January 2013).[Green Version]
- Jyri, S.; Topi, R.; Juuso, L.; Peter, D.L. Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation. Appl. Energy 2017, 190, 800–812. [Google Scholar]
- Wang, Q.; Jiang, B.; Xue, Q.; Sun, H.; Li, B.; Zou, H.; Yan, Y. Experimental investigation on EV battery cooling and heating by heat pipes. Appl. Therm. Eng. 2015, 88, 54–60. [Google Scholar] [CrossRef]
- Saxena, S.; Floch, C.L.; MacDonald, J.; Moura, S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J. Power Source 2015, 282, 265–276. [Google Scholar] [CrossRef]
- Jan, B.; Benjamin, N.; Sebastian, T.; Christoph, H. Integrating on-site renewable electricity generation into a manufacturing system with intermittent battery storage from electric vehicles. Procedia CIRP 2016, 48, 483–488. [Google Scholar]
- Darcovich, K.; Kenney, B.; MacNeil, D.; Armstrong, M. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems. Appl. Energy 2015, 141, 32–41. [Google Scholar] [CrossRef]
- Girish, S.; Simona, O. A control-oriented cycle-life model for hybrid electric vehicle lithiumion batteries. Energy 2016, 96, 644–653. [Google Scholar]
- Siwar, K.; Mouna, R.; Lotfi, K. A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid. Energy 2017, 118, 197–208. [Google Scholar]
- Calvillo, C.F.; Sanchez-Miralles, A.; Villar, J. Energy Managment and planing in smart cities. Renew. Sustain. Syst. 2016, 55, 273–287. [Google Scholar] [CrossRef]
- Jakobus, G.; Thomas, G.; James, M. Accelerated energy capacity measurement of lithium-ion cells to support future circular economy strategies for electric vehicles. Renew. Sustain. Syst. 2017, 69, 98–111. [Google Scholar] [Green Version]
- Li, M.H.; Chang, D.-S. Allocative efficiency of high-power Li-ion batteries from automotive mode (AM) to storage mode (SM). Renew. Sustain. Syst. 2016, 64, 60–67. [Google Scholar]
- Stuart, S.; Thomas, B. Leaving the grid—The effect of combining home energy storage with renewable energy generation. Renew. Sustain. Syst. 2016, 60, 1213–1224. [Google Scholar]
- Faessler, B.; Kepplinger, P.; Petrasch, J. Decentralized price-driven grid balancing via repurposed electric vehicle batteries. Energy 2017, 118, 446–455. [Google Scholar] [CrossRef]
- Sun, X.H.; Toshiyuki, Y.; Takayuki, M. Charge timing choice behavior of battery electric vehicle users. Transp. Res. Part. D: Transp. Environ. 2015, 37, 97–107. [Google Scholar] [CrossRef]
- Magnor, D.; Lunz, B.; Sauer, D.U. ‘Double Use’ of Storage Systems. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Patrick, T., Jürgen, G., Eds.; Elsevier: Amsterdam, Holland, 2015; pp. 453–463. [Google Scholar]
- Franziska, S.; Claudia, M.; Susen, D.; Bettina, K.; Ramona, W.; Josef, F.K.; Andreas, K. User responses to a smart charging system in Germany: Battery electric vehicle driver motivation, attitudes and acceptance. Energy Res. Soc. Sci. 2015, 9, 60–71. [Google Scholar]
- Atmaga, T.D.; Amin. Energy storage system using battery and ultracapacitor on mobile charging station for electric vehicle. Energy Procedia 2015, 68, 429–437. [Google Scholar] [CrossRef]
- Muhammad, A.; Takuya, O.; Takao, K. Extended utilization of electric vehicles and their re-used batteries to support the building energy management system. Energy Procedia 2015, 75, 1938–1943. [Google Scholar]
- Martin, P.; Eric, P.; Valérie, S.-M. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime. Appl. Energy 2016, 172, 398–407. [Google Scholar]
- Harighi, T.; Bayindir, R.; Hossain, E. Overview of Quality of Service Evaluation of a Charging Station for Electric Vehicle. In Proceeding of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 1180–1185. [Google Scholar]
- Hussain, S.; Mainul, I.M.; Mohamed, A. A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicle. Renew. Sustain. Syst. 2016, 64, 403–420. [Google Scholar]
- Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Syst. 2015, 49, 365–385. [Google Scholar] [CrossRef]
- Kafeel, A.K.; Muhammad, A.; Saad, M. Inductively coupled power transfer (ICPT) for electric vehicle charging—A review. Renew. Sustain. Syst. 2015, 47, 462–475. [Google Scholar]
- Radu, G.; Eduardo, R.; João, M.; João, P.S.C. Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer. Appl. Energy 2016, 178, 29–42. [Google Scholar]
- Yang, H.M.; Xiong, T.L.; Qiu, J.; Qiu, D.; Dong, Z.Y. Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Appl. Energy 2016, 167, 353–365. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, Y.; Tim, L.; Zhang, H.G. An electric vehicle dispatch module for demand-side energy participation. Appl. Energy 2016, 177, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Pedro, N.; Figueiredo, R.; Brito, M.C. The use of parking lots to solar-charge electric vehicles. Renew. Sustain. Syst. 2016, 66, 679–693. [Google Scholar]
- Christian, W.; Alexander, S. Understanding user acceptance factors of electric vehicle smart charging. Transp. Res. Part C Emerg. Technol. 2016, 71, 198–214. [Google Scholar]
- Bi, Z.C.; Kan, T.Z.; Chunting, C.M.; Zhang, Y.M.; Zhao, Z.M.; Gregory, A.K. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.J.; Zhang, Y. A novel centralized charging station planning strategy considering urban power network struture strength. Electr. Power Syst. Res. 2016, 136, 100–109. [Google Scholar] [CrossRef]
- Saeid, M.; Farshid, K.; Mohammad, R.R.; Akbar, M. Generation expansion planning by considering energy-efficiency programs in a competitive environment. Electr. Power Energy Syst. 2016, 80, 109–118. [Google Scholar]
- Mehdi, A.; Mehdi, N.; Omer, T. Getting to net zero energy building: investigating the role of vehicle to home technology. Energy Build. 2016, 130, 465–476. [Google Scholar]
- Zamani, A.G.; Zakariazadehand, A.; Jadid, S. Day-ahead resource scheduling of a renewable energy based virtual power plant. Appl. Energy 2016, 169, 324–340. [Google Scholar] [CrossRef]
- Barisa, A.; Rosa, M.; Laicane, I.; Sarmins, R. Application of low-carbon technologies for cutting household GHG emissions. Energy Procedia 2015, 72, 230–237. [Google Scholar] [CrossRef]
- Hu, J.J.; Hugo, M.; Tiago, S.; Morten, L. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects. Renew. Sustain. Syst. Energy Rev. 2016, 56, 1207–1226. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Nuri, C.; Murat, K.; Omer, T. Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transp. Res. Part. D Transp. Environ. 2016, 47, 195–207. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Chen, H.H.; Chen, J. Building smart grid to power the next century in Taiwan. Renew. Sustain. Energy Rev. 2017, 68, 126–135. [Google Scholar] [CrossRef]
- Ying, L.; Chris, D.; Zofia, L.; Margot, W. Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications. Appl. Energy 2016, 173, 535–554. [Google Scholar]
- Farid, A.; Esther, P.L.; Nathan, W.; Bart, D.S.; Zofia, L. Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks. Appl. Energy 2017, 192, 296–304. [Google Scholar]
- Seyed, M.M.T.; Hassan, R.; Mehdi, J.; Hamid, K. A probabilistic unit commitment model for optimal operation of plug-in electric vehicle in microgrid. Renew. Sustain. Energy Rev. 2016, 66, 934–947. [Google Scholar]
- Liu, L.C.; Zhu, T.; Pan, Y.; Wang, H. Multiple energy complementation based on distributed energy systems—Case study of chongming county, China. Aoolied Energy 2017, 192, 329–336. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bacekovic, I.; Cosic, B.; Krajacic, G.; Puksec, T.; Duic, N.; Markovska, N. Zero carbon energy system of South East Europe in 2050. Appl. Energy 2016, 184, 1517–1528. [Google Scholar] [CrossRef]
- Katja, L.; Arne, V.; Daniel, J. Business Model for Electric Mobility. Procedia CIRP 2016, 47, 483–488. [Google Scholar]
- Hu, Z.C.; Zhan, K.Q.; Zhang, H.C.; Song, Y.H. Pricing mechanisms design for guiding electric vehicle charging to fill load valley. Appl. Energy 2016, 178, 155–163. [Google Scholar] [CrossRef]
- Andrenacci, N.; Ragona, R.; Valenti, G. A demand-side approach to the optimal deployment of electric vehicle charging station in metroplitan areas. Appl. Energy 2016, 182, 36–46. [Google Scholar] [CrossRef]
- Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z. Distributed energy resource management using plug-in hybrid electric vehicle as a fuel-shifting demand. Energy Convers. Manag. 2015, 97, 78–93. [Google Scholar] [CrossRef]
- Guo, Z.M.; Julio, D.; Fan, Y.Y. Infrastructure planning for fast charching stations in a compactitive market. Transp. Res. Part. C Emerg. Technol. 2016, 68, 215–227. [Google Scholar] [CrossRef]
- Florian, S.; Jens, P.I.; Christoph, M.F.; Hauke, B.; Clemens, D. Impact of electric vehicles on distribution substations: A Swiss case stady. Appl. Energy 2015, 137, 88–96. [Google Scholar]
- Nikolaos, G.P.; Madeleine, G. A methodology to generate power profiles of electric vehicle parking lots under different operational strategies. Appl. Energy 2016, 173, 111–123. [Google Scholar]
- World Population Data: Focus on Youth. Available online: http://www.worldpopdata.org/ (accessed on 15 August 2017).
- Anu, G.K.; Anmol, M.; Akhil, V.S. A strategy to Enhance Electric Vehicle Penetration Level in india. Procedia Technol. 2015, 21, 552–559. [Google Scholar]
- Tarroja, B.; Zhang, L.; Wifvat, V.; Shaffer, B.; Samuelsen, S. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicle. Energy 2016, 106, 673–690. [Google Scholar] [CrossRef]
- Pankaj, M.; Pushkin, K.; Alexander, P.; Romesh, K. Development of control models for the planning of sustainable transportation systems. Transp. Res. Part. C Emerg. Technol. 2015, 55, 474–485. [Google Scholar]
- Islam, S.B.; Taha, S.U. A survey on behind the meter energy managment system in smart grid. Renew. Sustain. Energy Rev. 2017, 72, 1208–1232. [Google Scholar]
- Yasin, K. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302–318. [Google Scholar]
- Ali, S.M.; Jawad, M.; Khan, B.; Mehmood, C.A.; Zeb, N.; Tanoli, A.; Farid, U.; Glower, J.; Khan, S.U. Wide area smart grid architectural model and control: A survey. Renew. Sustain. Energy Rev 2016, 64, 311–328. [Google Scholar] [CrossRef]
- Luo, Y.G.; Zhu, T.; Wan, S.; Zhang, S.W.; Li, K.Q. Optimal charging schoulding for large-scale EV (electric vehicle) deployment base on the interaction of the smart-grid and intelligent-transport systems. Energy 2016, 97, 359–368. [Google Scholar] [CrossRef]
- Fang, X.L.; Yang, Q.; Wang, J.H.; Yan, W.J. Coordinated dispatch in multiple cooperative autonomous islanded microgrids. Appl. Energy 2016, 162, 40–48. [Google Scholar] [CrossRef]
- Nasim, N.; Yong, W. Risk management and participation planning of electric vehicle in smart grid for demand response. Energy 2016, 116, 836–850. [Google Scholar]
- Masoud, H.; Alireza, Z.; Shahram, J. Self-scheduling of electric vehicle in an intelligent parking lot using stochastic optimization. J. Frankl. Inst. 2015, 352, 449–467. [Google Scholar]
- Bharati, G.R.; Paudyal, S. Coordinated control of distribution grid and electric vehicle loads. Electr. Power Syst. Res. 2016, 140, 761–768. [Google Scholar] [CrossRef]
- Michael, E.; Ramesh, R. Communication technologies for smart grid applications: A survey. J. Netw. Comput. Appl. 2016, 74, 133–148. [Google Scholar]
- Martin-Martínez, F.; Sanchez-Miralles, A.; Rivier, M. A literature review of microgrids: A functional layer based classifiction. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Moein, M.; Hassan, F.; Ali, P.; Siamak, A. Smart grid adaptive volt-VAR optimization: Challenges for sustainable future grids. Sustain. Cities Soc. 2017, 28, 242–255. [Google Scholar]
- Nazmus, S.N.; Khandakar, A.; Mark, A.G.; Manoj, D. A survey of smart grid architectures, applications, benefits and standardization. J. Netw. Comput. Appl. 2016, 76, 23–36. [Google Scholar]
- López, G.; Moreno, J.; Amarís, H.; Salazar, F. Paving the road toward Smart Grids through large-scale advanced metering infrastructures. Electr. Power Syst. Res. 2015, 120, 194–205. [Google Scholar] [CrossRef]
- Sudip, M.; Samaresh, B.; Tamoghna, O.; Hussein, T.M.; Alagan, A. ENTRUST: Energy trading under uncertainty in smart grid systems. Comput. Netw. 2016, 110, 232–242. [Google Scholar]
- Adriano, F.; Ângela, F.; Olivier, C.; Paulo, L. Extension of holonic paradigm to smart grids. IFAC 2015, 48, 1099–1104. [Google Scholar]
- Ozan, E.; Nikolaos, G.P.; Iliana, N.P.; Anastasios, G.B.; João, P.S.C. A new perspective for sizing of distributed generation and energy storage for smart households under demand response. Appl. Energy 2015, 143, 26–37. [Google Scholar]
- Dušan, B.; Miloš, P. Impact of electric-drive vehicles on power system reliability. Energy 2015, 83, 511–520. [Google Scholar]
- Ozan, E.; Nikolaos, G.P.; João, P.S.C. Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges. Renew. Sustain. Energy Rev 2015, 52, 333–346. [Google Scholar] [Green Version]
- Andreas, P. Sustainable options for electric vehicle technologies. Renew. Sustain. Energy Rev. 2015, 41, 1277–1287. [Google Scholar]
- Antonio, C.-S.; Cipriano, R.-R.; David, B.-D.; Eduardo, C.-F. Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renew. Sustain. Energy Rev. 2016, 59, 1130–1148. [Google Scholar]
- Bhatti, A.R.; Salam, Z.; Aziz, M.J.B.; Yee, K.P.; Ashique, R.H. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev. 2016, 54, 34–47. [Google Scholar] [CrossRef]
- Olivier, B.; Eric, L.; Ghislain, R.; Eric, B. Efficiency-optimal power partitioning for improved partial load efficiency of electric drives. Electr. Power Syst. Res. 2017, 142, 176–189. [Google Scholar]
- Ahmed, T.E.; Ahmed, A.M.; Osama, A.M. DC microgrids and distribution systems: An overview. Electr. Power Syst. Res. 2015, 119, 407–417. [Google Scholar]
- Amany, E.-Z. Application of smart grid specifications to overcome excessive load shedding in Alexandria, Egypt. Electr. Power Syst. Res. 2015, 124, 18–32. [Google Scholar]
- Jagruti, T.; Basab, C. Intelli-grid: Moving towards automation of electric grid in India. Renew. Sustain. Energy Rev. 2015, 42, 16–25. [Google Scholar]
- Meng, J.; Mu, Y.; Jia, H.; Wu, J.; Yu, X.; Qu, B. Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system. Appl. Energy 2016, 162, 966–979. [Google Scholar] [CrossRef]
- Saber, F.; Seyed, A.T.; Mohammad, S. A new smart charging method for EVs for frequency control of smart grid. Electr. Power Energy Syst. 2016, 83, 458–469. [Google Scholar]
- Sun, Y.; Li, N.; Zhao, X.; Wei, Z.; Sun, G.; Huang, C. Robust H∞ load frequency control of delayed multi-area power system with stochastic disturbances. Neurocomputing 2016, 193, 58–67. [Google Scholar] [CrossRef]
- Chinthaka, S.; Ozansoy, C. Frequency response due to a large generator loss with the increasing penetration of wind/PV generation—A literatu rereview. Renew. Sustain. Energy Rev. 2016, 57, 659–668. [Google Scholar]
- Lakshmanan, V.; Marinelli, M.; Hu, J.; Bindner, H.W. Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark. Appl. Energy 2016, 173, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Miao, K.; Ramachandaramurthy, V.K.; Yong, J.Y. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 2016, 53, 720–732. [Google Scholar]
- Heydarian-Forushani, E.; Golshan, M.; Shafie-khah, M. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration. Appl. Energy 2016, 179, 338–349. [Google Scholar] [CrossRef]
- Zhou, B.; Littler, T.; Meegahapola, L.; Zhang, H. Power System steady-state analysis with large-scale electric vehicle integration. Energy 2016, 115, 289–302. [Google Scholar]
- Tsado, Y.; Lund, D.; Gamage, K.A.A. Resiliet communication for smart grid ubiquitous sensor network: State of the art and prospects for next generation. Comput. Commun. 2015, 71, 34–49. [Google Scholar] [CrossRef]
- Faeze, B.; Masoud, H.; Shahram, J. Optimal electrical and thermal energy managment of a residential energy hub, integrating demand response and energy storage system. Energy Build. 2015, 90, 65–75. [Google Scholar]
- Howlader, H.O.R.; Matayoshi, H.; Senjyu, T. Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid. Renew. Energy 2016, 99, 107–117. [Google Scholar] [CrossRef]
Location | EV | PHEV |
---|---|---|
North America | 8800 K | 3800 K |
Europe | 6400 K | 3100 K |
China | 9400 K | 11,400 K |
India | 8600 K | 9600 K |
Pacific | 2400 K | 1300 K |
Battery Parameters | NiCd | NaS | ZnBr | Li-ion |
---|---|---|---|---|
Power rating (MW) | 0~40 | 0.05~8 | 0.05~2 | 0~0.1 |
Discharge time | S~h | S~h | S~10 h | Min~h |
Power density (W/I) | 75~700 | 120~160 | 1~25 | 1300~10,000 |
Energy density (Wh/I) | 15~8 | 15~300 | 65 | 200~400 |
Response time | <S | <S | S | <S |
Efficiency (%) | 60~80 | 70~85 | 65~75 | 65~75 |
Lifetime in years | 5~20 | 10~15 | 5~10 | 5~100 |
Lifetime in cycles | 1500~3000 | 2500~4500 | 1000~3650 | 600~1200 |
Cost $ (kW) | 500~1500 | 1000~3000 | 700~2500 | 1200~4000 |
Cost $ (kW/h) | 800~1500 | 300~500 | 150~1000 | 600~2500 |
Type of Li-ion | Practical Energy Density (Wh/kg) | Cycle Life | Safety |
---|---|---|---|
110~190 | 500~1000 | Poor | |
100~120 | 1000 | Safer | |
90~115 | >3000 | Very safe | |
70~75 | >4000 | Extremely safe | |
~70 | >4000 | Extremely safe |
Type of Port | AC | DC |
---|---|---|
IEC 62196-2 | * | Hybrid version |
SAE J1772 | * | Combo version |
CHAdeMO | * |
EV and Population Information | US | China | Japan | UK | The Netherlands |
---|---|---|---|---|---|
EV (k) | 404 | 312 | 126 | 49.67 | 87.53 |
Chargers (k) | 28.15 | 46.65 | 16.12 | 8.716 | 17.78 |
Fast chargers (k) | 3.524 | 12.1 | 5.99 | 1.158 | 0.465 |
Population (m) | 324.6 | 1373.5 | 126.8 | 65.11 | 17.10 |
Population per square km | 35 | 145 | 346 | 255 | 412 |
Area in square km | 9,833,520 | 9,596,961 | 377,972 | 242,495 | 41,543 |
Home | Office | Parking | Urban | |
---|---|---|---|---|
Solar PV | * | * | * | * |
Micro turbine | * | * | * | |
Regular turbine | *1 | |||
CHP | *1 | |||
Battery | * | * | * | * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harighi, T.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Hossain, E. An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology. Energies 2018, 11, 2174. https://doi.org/10.3390/en11082174
Harighi T, Bayindir R, Padmanaban S, Mihet-Popa L, Hossain E. An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology. Energies. 2018; 11(8):2174. https://doi.org/10.3390/en11082174
Chicago/Turabian StyleHarighi, Tohid, Ramazan Bayindir, Sanjeevikumar Padmanaban, Lucian Mihet-Popa, and Eklas Hossain. 2018. "An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology" Energies 11, no. 8: 2174. https://doi.org/10.3390/en11082174
APA StyleHarighi, T., Bayindir, R., Padmanaban, S., Mihet-Popa, L., & Hossain, E. (2018). An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology. Energies, 11(8), 2174. https://doi.org/10.3390/en11082174