Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network
Abstract
:1. Introduction
2. Challenges of Fault Detection for Gas Turbine Hot Components
3. Developed Fault Detection Method for Gas Turbine Hot Components Based On a CNN
3.1. Theoretical Background of a CNN
3.2. Applicability of CNNs in Gas Turbine Hot Component Fault Detection
3.3. Improved CNN for Gas Turbine Hot Component Fault Detection
4. Experiments
4.1. Data Description and Model Parameters Setup
4.2. CNN Detection Performance
4.3. Detection Visualization
4.4. Improvement in Circular-Padding
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
EGT | Exhaust gas temperature |
CNN | Convolutional neural network |
PHM | Prognostics and health management |
Static blade inlet velocity | |
Static blade outlet velocity | |
Moving blade outlet velocity | |
Turbine speed | |
Static blade outlet airflow angle | |
Static blade outlet relative velocity angle | |
Moving blade outlet airflow angle | |
Moving blade outlet relative velocity angle | |
FAR | False alarm rate |
MAR | Missing alarm rate |
Output feature map | |
Bias | |
Convolutional kernel | |
Input feature map | |
Combustor outlet temperature | |
Exhaust gas temperature | |
Expansion ratio | |
Turbine efficiency | |
Isentropic exponent | |
Angular position of the i-th thermocouple | |
Angular position of the j-th combustor | |
Swirl angle of hot gas | |
A | Amplitude of the function |
Constant parameter that characterizes the influence of the combustor | |
TP | True positive |
TN | True negative |
FP | False positive |
FN | False negative |
ACC | Accuracy |
ROC | receiver operating characteristic |
MCC | Matthews correlation coefficient |
AUC | Area under ROC curve |
References
- Zaidan, M.A.; Relan, R.; Mills, A.R.; Harrison, R.F. Prognostics of Gas Turbine Engine: An Integrated Approach. Expert Syst. Appl. 2015, 42, 8472–8483. [Google Scholar] [CrossRef]
- Lu, F.; Jiang, C.; Huang, J.; Wang, Y.; You, X. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis. Energies 2016, 9, 828. [Google Scholar] [CrossRef]
- Tahan, M.; Tsoutsanis, E.; Muhammad, M.; Karim, Z.A.A. Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review. Appl. Energy 2017, 198, 122–144. [Google Scholar] [CrossRef]
- Lu, J.; Huang, J.; Lu, F. Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle. Energies 2017, 10, 39. [Google Scholar] [CrossRef]
- Volponi, A.J. Gas Turbine Engine Health Management: Past, Present and Future Trends. J. Eng. Gas. Turbines Power-Trans. ASME 2014, 136, 051201. [Google Scholar] [CrossRef]
- General Electric Company. Heavy Duty Gas Turbine Monitoring & Protection; General Electric Company: Las Vegas, NV, USA, 2015. [Google Scholar]
- Miller, K.W.; Iasillo, R.J.; Lemmon, M.F. Method of Monitoring for Combustion Anomalies in A Gas Turbomachine and A Gas Turbomachine Including A Combustion Anomaly Detection System. U.S. Patent 20,150,267,591, 24 September 2015. [Google Scholar]
- Yu, L.; Jin, J. Study on Deflection Laws of 9FA Gas-Turbine Exhaust Temperature Field. Electr. Power Constr. 2009, 3, 26. [Google Scholar]
- Gulen, S.C.; Griffin, P.R.; Paolucci, S. Real-time on-line Performance Diagnostics of Heavy-duty Industrial Gas Turbines. J. Eng. Gas. Turbines Power-Trans. ASME 2002, 124, 910–921. [Google Scholar] [CrossRef]
- Liu, J. The Research for Exhaust Temperature Anomaly Detection in Gas Turbine. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2014. [Google Scholar]
- Song, Y.X.; Zhang, K.X.; Shi, Y.S. Research on Aeroengine Performance Parameters Forecast Based on Multiple Linear Regression Forecasting Method. J. Aerosp. Power 2009, 24, 427–431. [Google Scholar]
- Yılmaz, I. Evaluation of the relationship between exhaust gas temperature and operational parameters in CFM56-7B engines. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2009, 223, 433–440. [Google Scholar] [CrossRef]
- Tarassenko, L.; Nairac, A.; Townsend, N.; Buxton, I.; Cowley, Z. Novelty detection for the identification of abnormalities. Int. J. Syst. Sci. 2000, 31, 1427–1439. [Google Scholar] [CrossRef]
- Kenyon, A.D.; Catterson, V.M.; McArthur, S.D.J. Development of An Intelligent System for Detection of Exhaust Gas Temperature Anomalies in Gas Turbines. Insight 2010, 52, 419–423. [Google Scholar] [CrossRef]
- Yan, W.; Yu, L. On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach. In Proceedings of the 2015 Annual Conference of the Prognostics and Health Management Society, Austin, TX, USA, 18–22 October 2015. [Google Scholar]
- Yan, W. One-Class Extreme Learning Machines for Gas Turbine Combustor Anomaly Detection. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar]
- Zhang, Y.; Bingham, C.; Garlick, M.; Gallimore, M. Applied Fault Detection and Diagnosis for Industrial Gas Turbine Systems. Int. J. Auto. Comput. 2017, 14, 463–473. [Google Scholar] [CrossRef]
- Basseville, M.; Benveniste, A.; Mathis, G.; Zhang, Q. Monitoring the combustion set of a gas turbine. IFAC Symp. Fault Detect. Superv. Saf. Tech. Process. SAFEPROCESS 1994, 1, 397–402. [Google Scholar] [CrossRef]
- Zhang, Q.; Basseville, M.; Benveniste, A. Early warning of slight changes in systems. Automatica 1994, 30, 95–113. [Google Scholar] [CrossRef]
- Medina, P.; Saez, D.; Roman, R. On Line Fault Detection and Isolation in Gas Turbine Combustors. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Liu, J.F.; Liu, J.; Wan, J.; Wang, Z.; Yu, D. Early Fault Detection of Hot Components in Gas Turbines. J. Eng. Gas. Turbines Power-Trans. ASME 2017, 139, 021201. [Google Scholar]
- Jin, K.H.; Mccann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Chen, C.L.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.X.; Kim, B.K.; Lee, S.Y. Color Image Processing Based on Nonnegative Matrix Factorization with Convolutional Neural Network. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014. [Google Scholar]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv, 2013; arXiv:1312.4400. [Google Scholar]
- Zhang, Q. Contribution à la Surveillance de Procédés Industriels. Ph.D. Thesis, University of Rennes 1, Rennes, France, 1991. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 International Conference on Computer Vision (ICCV15), Santiago, Chile, 11–18 December 2015. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta 1975, 405, 442–451. [Google Scholar] [CrossRef]
Measures | ACC | MCC | AUC | |
---|---|---|---|---|
Models | ||||
ANN | 0.994 ± 0.0016 | 0.709 ± 0.0866 | 0.808 ± 0.0920 | |
ELM | 0.992 ± 0.0009 | 0.564 ± 0.0736 | 0.686 ± 0.0616 | |
CNN | 0.998 ± 0.0007 | 0.927 ± 0.0347 | 0.999 ± 0.0014 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, J.; Yu, D.; Kang, M.; Yan, W.; Wang, Z.; Pecht, M.G. Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network. Energies 2018, 11, 2149. https://doi.org/10.3390/en11082149
Liu J, Liu J, Yu D, Kang M, Yan W, Wang Z, Pecht MG. Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network. Energies. 2018; 11(8):2149. https://doi.org/10.3390/en11082149
Chicago/Turabian StyleLiu, Jiao, Jinfu Liu, Daren Yu, Myeongsu Kang, Weizhong Yan, Zhongqi Wang, and Michael G. Pecht. 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network" Energies 11, no. 8: 2149. https://doi.org/10.3390/en11082149
APA StyleLiu, J., Liu, J., Yu, D., Kang, M., Yan, W., Wang, Z., & Pecht, M. G. (2018). Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network. Energies, 11(8), 2149. https://doi.org/10.3390/en11082149