Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Experimental Procedure
2.3. Product Characterization
2.3.1. Proximate Analysis
2.3.2. Ultimate Analysis
2.3.3. Heating Value Analysis
2.3.4. Thermogravimetric Analysis
2.3.5. Scanning Electron Microscopy (SEM)
2.4. Mass and Energy Yield
3. Results and Discussion
4. Conclusions
- In accordance with the literature, compared to the raw fruit wastes, the ultimate and proximate analysis showed that the FC of the hydrochars increased, while the oxygen and VM content decreased. Also, increasing the temperature of the HTC process resulted in an increase in the FC content, HHV, and energy yield, in addition to a decrease in the VM content.
- In contrary to the results on the HTC of other feedstocks in the literature, the mass yield of the hydrochars from RA and GP increased with increasing process temperature. This contradictory trend was attributed to the high sugar (glucose or fructose) content of these two fruit residues, as the same trend was observed for the HTC of glucose.
- The mass yield remained almost constant with increasing temperature for ACP and decreased for the AJP sample. These two feedstocks also contain some amount of sugar but not as high as that in RA or GP; hence, the results were only slightly affected by their sugar content.
- TGA-DTG analysis showed that in comparison to the raw fruit wastes, the hydrochars have higher ignition temperatures but shorter combustion times or faster combustion rates. Moreover, their ash contents are considerably lower.
- This study also found the optimum process temperature that is sufficient to minimize ash content, which is an important fuel property. The optimum temperature to achieve the minimum ash content was 225 °C for all fruit samples except ACP, whose ash content still reduced when the process temperature was increased from 225 °C to 260 °C.
- The possible explanation for the increase in ash content above 225 °C is that the hydrochar increases in porosity after 230 °C. The SEM images of AP and GP also indicate an improvement in the porosity with higher temperatures.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cherubini, F.; Peters, G.P.; Berntsen, T.; Strømman, A.H.; Hertwich, E. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy 2011, 3, 413–426. [Google Scholar] [CrossRef]
- Rich, T.; Felfel, A. An Overview of Canadian Food Loss and Waste Estimates. Presented at Webinars and Speaker Series, Rural Development Institute, Brandon University, Brandon, MB, Canada, 4 June 2015. [Google Scholar]
- Minaret, J.; Dutta, A. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Bioresour. Technol. 2016, 200, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Arellano, O.; Flores, M.; Guerra, J.; Hidalgo, A.; Rojas, D.; Strubinger, A. Hydrothermal carbonization of corncob and characterization of the obtained hydrochar. Chem. Eng. Trans. 2016, 50, 235–240. [Google Scholar]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry 2009, 15, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, I.; Rillig, M.C.; Kruse, A.; Greef, J.M.; Kücke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant. Nutr. Soil Sci. 2014, 177, 48–58. [Google Scholar] [CrossRef]
- Yan, W.; Hastings, J.T.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 2010, 24, 4738–4742. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Wang, B.; Wang, Q.; Yang, G.; Chen, J. Effect of Residence Time on Hydrothermal Carbonization of Corn Cob Residual. Bioresources 2015, 10, 3979–3986. [Google Scholar] [CrossRef]
- Reza, M.T.; Rottler, E.; Herklotz, L.; Wirth, B. Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour. Technol. 2015, 182, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Magdziarz, A. Hydrothermal carbonization, torrefaction and slow pyrolysis of miscanthus giganteus. Energy 2017, 140, 1–13. [Google Scholar] [CrossRef]
- Oktaviananda, C.; Rahmawati, R.F.; Prasetya, A.; Purnomo, C.W.; Yuliansyah, A.T.; Cahyono, R.B. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. In Proceedings of the AIP Conference on Chemistry, Chemical Process. and Engineering (IC3PE), Yogyakarta, Indonesia, 15–16 November 2016. [Google Scholar]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Zielinska, B.; Felix, L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefin. 2013, 3, 113–126. [Google Scholar] [CrossRef]
- Pala, M.; Kantarli, I.C.; Buyukisik, H.B.; Yanik, J. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour. Technol. 2014, 161, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, Q.; He, R.; Zhao, X.; Li, G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Sabio, E.; Álvarez-Murillo, A.; Román, S.; Ledesma, B. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Manag. 2016, 47, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, E.; Atila, B.; Mumme, J.; Reza, M.T.; Toptas, A.; Elibol, M.; Yanik, J. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 2015, 196, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Berge, N.D.; Flora, J.R.V.; Drive, B.; Carolina, N. Energy Source Creation from Diverted Food Wastes via Hydrothermal Carbonization; Technical Report; Environmental Research and Education Foundation: Raleigh, NC, USA, 2015. [Google Scholar]
- Berge, N.D.; Li, L.; Flora, J.R.V.; Ro, K.S. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag. 2015, 43, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Jordan, B.; Berge, N.D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques. Waste Manag. 2012, 32, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Tassini, C.; Romero, R.; Escobar, M.; Gordon, A.; Flores, M. Development of an analytical method for the main organic compounds derived from thermochemical conversion of biomass. J. Chil. Chem. Soc. 2016, 61, 2837–2842. [Google Scholar] [CrossRef]
- Knezevic, D.; Van Swaaij, W.P.M.; Kersten, S.R.A. Hydrothermal Conversion of Biomass: I, Glucose Conversion in Hot Compressed Water. Ind. Eng. Chem. Res. 2009, 48, 4731–4743. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Sivanandan, L. Hydrothermal carbonization of spent osmotic solution (sos) generated from osmotic dehydration of blueberries. Agriculture 2014, 4, 239–259. [Google Scholar] [CrossRef]
- ASTM D5142-09, Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental ProcASTM D5142-09; ASTM International: West Conshohocken, PA, USA, 2009; Available online: www.astm.org (accessed on 12 January 2017).
- Gamgoum, R.; Dutta, A.; Santos, R.; Chiang, Y. Hydrothermal conversion of neutral sulfite semi-chemical red liquor into hydrochar. Energies 2016, 9, 435. [Google Scholar] [CrossRef]
- Kambo, H.S. Energy Densification of Lignocellulosic Biomass via Hydrothermal Carbonization and Torrefaction. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2014. [Google Scholar]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Kent Hoekman, S.; Balasubramanian, R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Basso, D.; Weiss-Hortala, E.; Patuzzi, F.; Castello, D.; Baratieri, M.; Fiori, L. Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 2015, 182, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirbas, A. Relationships proximate analysis results and higher heating values of lignites. Energy Sources Part A Recover. Util. Environ. Eff. 2008, 30, 1876–1883. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Dinjus, E.; Kruse, A.; Tröger, N. Hydrothermal carbonization-1. Influence of lignin in lignocelluloses. Chem. Eng. Technol. 2011, 34, 2037–2043. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers. Manag. 2015, 105, 746–755. [Google Scholar] [CrossRef]
- Yao, C.; Shin, Y.S.; Wang, L.-Q.; Windisch, C.F.; Samuels, W.D.; Arey, B.W.; Wang, C.M.; Risen, W.M.; Exarhos, G.J. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System. J. Phys. Chem. C. 2007, 111, 15141–15145. [Google Scholar] [CrossRef]
- Pruksakit, W.; Patumsawad, S. Hydrothermal carbonization (htc) of sugarcane stranded: Effect of operation condition to hydrochar production. Energy Procedia 2016, 100, 223–226. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; de Morais, S.M.; de Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Salgado, J.M.; Curte, F.; Mansi, D.N. Effect of gala apples (malus domestica borkh) on lipidemia of hyperlipidemic rats. Ciênc. Tecnol. Alimens 2008, 28, 477–484. [Google Scholar] [CrossRef]
- Sato, M.F.; Vieira, R.G.; Zardo, D.M.; Falcao, L.D.; Nogueira, A.; Wosiacki, G. Apple pomace from eleven cultivars: An approach to identify sources of bioactive compounds. Acta Sci. Agron. 2010, 32, 29–35. [Google Scholar]
- Wosiacki, G.; Sato, M.D.F.; Rigoni, D.C.; Canteri, M.H.G.; de Oliveira Petkowicz, C.L.; Nogueira, A. Chemical and instrumental characterization of pectin from dried pomace of eleven apple cultivars. Acta Sci. Agron. 2011, 33, 383–389. [Google Scholar] [CrossRef]
- Li, X.; Ma, B.; Xu, L.; Hu, Z.; Wang, X. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim. Acta 2006, 441, 79–83. [Google Scholar] [CrossRef]
Feedstock | Treatment | Ultimate Analysis | Proximate Analysis (Dry Basis) | ||||||
---|---|---|---|---|---|---|---|---|---|
C (%) | H (%) | N (%) | S (%) | O (%) | Volatile Matter (VM) (%) | Fixed Carbon (FC) (%) | Ash (%) | ||
Rotten apple (RA) | Raw | 43.53 | 6.20 | 1.23 | 0.00 | 47.49 | 83.64 | 14.81 | 1.55 |
HTC-190 | 62.45 | 5.43 | 0.97 | 0.00 | 30.86 | 65.50 | 34.20 | 0.29 | |
HTC-225 | 64.20 | 5.33 | 0.89 | 0.00 | 29.41 | 63.93 | 35.90 | 0.17 | |
HTC-260 | 66.81 | 5.03 | 0.86 | 0.00 | 26.85 | 61.64 | 37.91 | 0.45 | |
Apple chip pomace (ACP) | Raw | 47.94 | 6.66 | 1.96 | 0.07 | 40.90 | 81.65 | 15.88 | 2.47 |
HTC-190 | 55.89 | 7.09 | 2.85 | 0.00 | 33.39 | 85.60 | 13.61 | 0.78 | |
HTC-225 | 62.10 | 6.94 | 2.26 | 0.07 | 27.86 | 78.13 | 21.10 | 0.77 | |
HTC-260 | 67.48 | 7.07 | 2.43 | 0.07 | 22.40 | 76.18 | 23.28 | 0.55 | |
Apple juice pomace (AJP) | Raw | 44.15 | 6.44 | 0.62 | 0.00 | 46.79 | 83.14 | 14.86 | 2.00 |
HTC-190 | 53.89 | 6.18 | 0.92 | 0.00 | 37.33 | 77.47 | 20.85 | 1.68 | |
HTC-225 | 61.23 | 6.34 | 1.04 | 0.00 | 31.37 | 73.67 | 26.31 | 0.02 | |
HTC-260 | 64.90 | 5.79 | 0.97 | 0.00 | 26.85 | 68.63 | 29.88 | 1.49 | |
Grape pomace (GP) | Raw | 44.14 | 6.18 | 1.27 | 0.00 | 41.91 | 76.22 | 17.28 | 6.50 |
HTC-190 | 55.73 | 5.50 | 1.62 | 0.00 | 34.55 | 68.58 | 28.82 | 2.60 | |
HTC-225 | 61.46 | 5.16 | 1.72 | 0.00 | 29.97 | 62.82 | 35.48 | 1.69 | |
HTC-260 | 63.91 | 5.06 | 1.74 | 0.00 | 24.98 | 60.63 | 35.06 | 4.31 | |
Miscanthus | Raw [28] | 46.66 | 6.00 | 0.21 | 0.00 | 45.34 | 87.51 | 11.6 | 0.80 |
HTC-190 [28] | 48.76 | 5.96 | 0.20 | 0.00 | 44.70 | 83.84 | 15.66 | 0.51 | |
HTC-225 [28] | 49.62 | 5.92 | 0.28 | 0.00 | 41.83 | 81.86 | 17.46 | 0.69 | |
HTC-260 | 65.33 | 4.95 | 0.25 | 0.00 | 28.46 | 66.27 | 32.72 | 1.01 |
Feedstock | Total Sugar Content (%) | Lignocellulose Content (%) | Treatment | Mass Yield (%) | Energy Densification Ratio | Energy Yield (%) |
---|---|---|---|---|---|---|
RA | 80.9 [39] | 2.7 [40] | HTC-190 | 36 | 1.42 | 51 |
HTC-225 | 36 | 1.47 | 53 | |||
HTC-260 | 39 | 1.49 | 58 | |||
ACP | 33.7 [41] | 32.49 [42] | HTC-190 | 27 | 1.19 | 32 |
HTC-225 | 27 | 1.33 | 36 | |||
HTC-260 | 27 | 1.44 | 39 | |||
AJP | 39.1 [41] | 28.7 [42] | HTC-190 | 36 | 1.25 | 45 |
HTC-225 | 28 | 1.43 | 40 | |||
HTC-260 | 30 | 1.57 | 47 | |||
GP | 29.2 [43] | 9.76 [39] | HTC-190 | 38 | 1.25 | 35 |
HTC-225 | 40 | 1.4 | 56 | |||
HTC-260 | 45 | 1.42 | 64 | |||
Miscanthus | 13.4 [28] | 86.6 [28] | HTC-190 [28] | 78 | 1.08 | 87 |
HTC-225 [28] | 64 | 1.22 | 76 | |||
HTC-260 | 46 | 1.54 | 71 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Heidari, M.; Regmi, B.; Salaudeen, S.; Arku, P.; Thimmannagari, M.; Dutta, A. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 2018, 11, 2022. https://doi.org/10.3390/en11082022
Zhang B, Heidari M, Regmi B, Salaudeen S, Arku P, Thimmannagari M, Dutta A. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies. 2018; 11(8):2022. https://doi.org/10.3390/en11082022
Chicago/Turabian StyleZhang, Bide, Mohammad Heidari, Bharat Regmi, Shakirudeen Salaudeen, Precious Arku, Mahendra Thimmannagari, and Animesh Dutta. 2018. "Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar" Energies 11, no. 8: 2022. https://doi.org/10.3390/en11082022
APA StyleZhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M., & Dutta, A. (2018). Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies, 11(8), 2022. https://doi.org/10.3390/en11082022