Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam
Abstract
:1. Introduction
Coal Deposits
2. Socio-Economic Characteristics
2.1. Cao Ngan Factory’s Operation and Status of Wastes’ Treatment
2.1.1. Overview of Cao Ngan Power Plant
2.1.2. The Technology of the Cao Ngan Power Plant
2.2. Current Status of Ash Management and Disposal in Thai Nguyen Province
2.2.1. Coal Mine Ashes (Residues)
2.2.2. Discharged Coal Ash and Slag from Cao Ngan Power Plant
- Fly ash: Fly ash is one of the types of waste discharged by coal combustion. This is a fine powder which remains after the burning of coal in a power plant. Fly ash is a non-combustible, inorganic material in coal which forms a crystalline substance after combustion. Fly ash solidifies when suspended in the emission, and is then recovered from an electrostatic dust filter system. Because fly ash hardens while floating in the emission, it generally has a globular shape, with diameters ranging from 0.5 μm to 100 μm. The composition of fly ash is predominantly silica (SiO2), aluminum oxide (Al2O3) and iron oxide (Fe2O3). Fly ash is an important material for producing compacted concrete, high-value lightweight brick, and special additives. The leaching results of fly ash are presented in Table 3 [18].
- Bottom ash: Bottom ash is coarser than fly ash. It is an unburned component which remains and becomes concentrated at the bottom of the furnace. Its particle size ranges from 0.125 to 2 mm. It is often used instead of sand in the production of non-baked construction materials (bricks and tile), as well as in roadbed construction and to fill in swamp land. The leaching results of bottom ash are presented in Table 4 [18].
- Gypsum: This material is derived from desulfurization in the exhaust gas, which is done to prevent air pollution. Gypsum can be collected separately if the desulphurization system is installed outside the kiln. Vinacomin’s CFB kilns do not have off-kiln systems, meaning that gypsum is normally mixed in with the ash [16,17].
2.3. Treatment of Ash Slag at Quan Trieu Cement Factory
3. Status of Recycling Coal Slag in Vietnam
3.1. The Situation of Coal Ash in Vietnam
3.2. Environmental Issues in the Surrounding Area of the Cao Ngan Power Plant
3.3. Overview of Solutions for Treating and Recycling Coal Ash of Power Plants
4. Carbon Mineralization Technology as a Solution
4.1. Carbon Mineralization Technology Utilizing Coal Ash of Power Plant to Produce Green Cement
4.2. Reduction of CO2 Emissions
4.3. Applications of Green Concrete in Korea
4.4. Quantification on the Amount of Reducible CO2 when Applying the Technology (Reduction of CO2 Emission in CSA (Calcium Sulfo Aluminate) Cement Production)
5. Conclusions
- The benefits of green cement technology are that it is environment friendly and reduces the impact of climate change.
- In H-CSA cement production, fly ash has the advantage that it can be used as a substitute for clay in cement; therefore, this reduces the amount of natural resources to be used. Hence, investment costs will be significantly reduced for raw material purchase, as well as for finding new mines.
- Green concrete can recycle waste, as well as the bottom ash from power plants, and save on the costs of waste treatment systems in factories.
- Economically, recycling one ton of fly ash would cost about 40 US dollars. If sold at a price close to the price of cement (because fly ash is also a type of adhesive), the economic effect can be seen clearly.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Thinh, D.; Nguyen, T. Nearly Half of Phuc Ha Commune Is Dumping Ground. People’s Army Newspaper. Available online: http://www.qdnd.vn/phong-su-dieu-tra/dieu-tra/thai-nguyen-gan-mot-nua-dien-tich-xa-phuc-ha-la-bai-do-thai-than-492349 (accessed on 11 November 2016).
- Ha-Duong, M.; Truong, A.H.; Nguyen, N.; Anh, H.; Nguyen, T. Synthesis Report on Socio-Environmental Impacts of Coal and Coal-Fired Power Plants in Vietnam; Clean Energy and Sustainable Development Lab Report; Clean Energy and Sustainable Development Lab: Hanoi, Vietnam, 30 June 2016. [Google Scholar]
- La, N.H. Achievement of Social-Economic Development, Thai Nguyen Statistical Year Book 2015; Vietnam Statistical Publishing House: Thai Nguyen, Vietnam, 2016. [Google Scholar]
- Thai Nguyen People’s Committee. Report No. 272/BC-UBND on Current Performance of Socio-Economic Development Tasks in 2016, Directions and Tasks of Socio-Economic Development in 2017 in Thai Nguyen Province. Available online: http://festivaltra.thainguyen.gov.vn/wps/wcm/connect/a7e8ad004f8f4fc38286da184ade83b3/bc+272.pdf?MOD=AJPERES&CACHEID=a7e8ad004f8f4fc38286da184ade83b3 (accessed on 18 November 2016).
- Malesky, E.; Dau, T.A.; Pham, T.N.; Nguyen, L.N.; Le, H.T.; Nguyen, H.T.T.; Nguyen, H.L.; Nguyen, V.H. Provincial competitiveness indicator (PCI) of Vietnam in 2016. Annu. Rep. Vietnam Chamb. Commer. Ind. (VCCI) 2016, 1–160. [Google Scholar]
- Thai Nguyen People’s Committee. PCI 2016 Infrastructure: Confirm the Effort of Thai Nguyen. 2017. Available online: http://moc.gov.vn/en/web/guest/trang-chi-tiet/-/tin-chi-tiet/Z2jG/299847/306486/xu-ly-triet-de-tro-xi-cua-cac-nha-may-nhiet-dien-chay-than.html (accessed on 7 January 2016).
- Machines and Industrial Equipment Corporation. Thai Nguyen Power Plant. Ministry of Industry and Trade. 2014. Available online: http://mie.com.vn/du-an/nha-may-nhiet-dien–cao -ngan-thai-nguyen/135.html (accessed on 2 June 2017).
- Institute of Building Materials, Ministry of Construction. National Standards TCVN 6260: 2009 on Portland Blended Cement—Specifications, 2009. Academy of Managers for Construction and Cities, Ministry of Construction. Available online: http://amc.edu.vn/vi/co-so-du-lieu-/tieu-chuan-quy-chuan/766-vat-lieu-xay-dung/3093-tcvn-6260-2009-xi-mang-pooc-lang-hon-hop-yeu-cau-ky-thuat (accessed on 17 April 2009).
- Huyen, N.T. Cao Ngan Power Plant: 10 Years-a Development Stage. In Thainguyen Adm. Commer. Ind. News.; 2013. Available online: http://congthuong thain guyen.gov.vn/en/news--events/cao-ngan-power-plant-10-years-%E2%80%93-a-development-stage-3801.phtml (accessed on 4 November 2013).
- Nga, T. Cao Ngan Power: 8 Years to Find a Way to Consume Coal Ash. Ministry of Construction’s Electronic Newspaper. 2015. Available online: http://www.baoxaydung.comvn/news/vn/vat-lieu/nhiet-dien-cao-ngan-8-nam-tim-duong-tieu-thu-tro-xi.html (accessed on 17 April 2009).
- Phuong, H. Cao Ngan Power Plant Builds an Unburned Brick Production Line to Handle Ash in Production. Vietnam Environmental Administration Online Newspaper. 2011. Available online: http://tapchimoitruong.vn/pages/article.aspx?item=Nhi%E1%BB%87t-%C4%91i%E1%BB%87n-Cao-Ng%E1%BA%A1n-x%C3%A2y-d%E1%BB%B1ng-d%C3%A2y-chuy%E1%BB%81n-s%E1%BA%A3n-xu%E1%BA%A5t-g%E1%BA%A1ch-kh%C3%B4ng-nung-%C4%91%E1%%BB%83-x%E1%BB%AD-l%C3%BD-tro-x%E1%BB%89-trong-s%E1%BA%A3n-xu%E1%BA%A5t-40239 (accessed on 12 December 2011).
- Thao, N.D. Development strategy and the application of circulating fluidized bed combustion in power generation projects of Vietnam National Coal Corporation (VINACOAL). Electr. Supply Ind. Transit. Issues Prospect Asia 2004, 14-16, 16-24–16-34. [Google Scholar]
- Luu, T.V.; Do, T.N.; Le, T.X. Causes Distortion of Open Pit Mine Discharge and Recommend Some Solutions to Ensure Stability. Institute of Mining Science and Technology, VINACOMIN. 2012. Available online: http://imsat.vn/admin/uploads/5499-Bai%2010.doc (accessed on 20 October 2012).
- Luc, D. Nearly 1000 Police Keep Order the People Oppose Coal Mining in Thai Nguyen Province. Family and Social Newspaper. 2017. Available online: http://giadinh.net.vn/xa-hoi/thai-nguyen-gan-1000-canh-sat-giu-trat-tu-khu-vuc-dan-phan-doi-khai-thac-than-20170824215314193.htm (accessed on 24 August 2017).
- Thao, D. The Impacts of Mineral Exploitation on the Environment and People in Thai Nguyen, Case Study: Khanh Hoa Coal Mine, Thai Nguyen, Viet Nam. Vietnam Resilience System Web Site. 2013. Available online: https://vietnam.resiliencesystem.org/impacts-mineral-exploitation-environment-and-people-thai-nguyen (accessed on 29 November 2013).
- Dinh, V.Q. Output for Ash Slag for Power Plant. Cam Pha Power Joint Stock Company. 2012. Available online: http://www.nhietdiencampha.com.vn/tin-tuc/Dau-ra-cho-tro-xi-thai-nha-may-nhiet-dien.html (accessed on 17 July 2012).
- Dinh, V.Q. Output for Ash Slag for Power Plant. Vietnam National Coal-Mineral Industries Holding Corporation Limited Web Site. 2012. Available online: http://www.vinacomin.vn/tap-chi-than-khoang-san/dau-ra-cho-tro-xi-thai-nha-may-nhiet-dien-2201.htm (accessed on 17 July 2012).
- Nguyen, G.T. Report on Environmental Monitoring in 2016 of Thai Nguyen Province; Centre of Environmental Resources Monitoring, Department of Thai Nguyen Natural Resources and Environment: Thai Nguyen, Vietnam, 30 December 2016; pp. 1–50. [Google Scholar]
- Quynh, T. Quan Trieu Cement: Business Targets Increased Sharply in the First Half of 2015. Vietnam Cement Association Online Newspaper. 2015. Available online: http://ximang.vn/doanh-nghiep/thanh-tuu/xi-mang-quan-trieu-cac-chi-tieu-sxkd-tang-manh-nua-dau-nam-2015-7460.htm (accessed on 10 July 2015).
- Trung, T.D. Practical Report of Cement Joint Stock Company. 2015. Available online: https://www.slideshare.net/tranductrungpl1/thc-tp-trn-c-trung-2 (accessed on 10 July 2015).
- Bao, Q.B.; Vu, A.T.P.; Tung, M.T.; Hien, D.L. Tentative to use wastes from the power plants for construction building materials. IOP Conf. Ser. Earth Environ. Sci. 2014, 143, 1–6. [Google Scholar]
- Global CCS Institute. Clean Coal Technologies, Carbon Capture and Sequestration, Updated Information, September 2017. Available online: http://www.world-nuclear.org/information-library/energy-and-the-environment/clean-coal-technologies.aspx (accessed on 12 September 2017).
- Rubiera, F.; Arenillas, A.; Arias, B.; Pis, J.J.; Suárez-Ruiz, I.; Steel, K.M.; Patrick, J.W. Combustion behaviour of ultra clean coal obtained by chemical demineralization. Fuel 2003, 82, 2145–2151. [Google Scholar] [CrossRef]
- Quoc, P.H.D. Analysis on the Utilization of Coal Ash from Power Plant in Vietnam; Institute of Industrial Sciences, University of Tokyo: Tokyo, Japan, 2017; Available online: http://www.nsl.hcmus.edu.vn/greenstone/collect/hnkhbk/archives/HASH015b/16fa54b7.dir/doc.pdf (accessed on 14 February 2017).
- Paria, S.; Yuet, P.K. Solidification—Stabilization of organic and inorganic contaminants using Portland cement: A literature review. Environ. Rev. 2006, 14, 217–255. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Williams, M.; Ortega, J.M.; Sanchez, I.; Cabeza, M.; Climent, M.A. Nondestructive study of the microstructural effects of sodium and magnesium sulphate attack on mortars containing silica fume using impedance spectroscopy. Appl. Sci. 2017, 7, 648. [Google Scholar] [CrossRef]
- Ortega, J.M.; Sanchez, I.; Climent, M.A. Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars. Arch. Civ. Mech. Eng. 2015, 15, 569–583. [Google Scholar] [CrossRef]
- Joshaghani, A.; Balapour, M.; Ramezanianpour, A.A. Effect of controlled environmental conditions on mechanical microstructural and durability properties of cement mortar. Constr. Build. Mater. 2018, 164, 134–149. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Comps. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Decision No. 1696/QD-TTg Dated 23/09/2014 of the Prime Minister on Some Solutions to Treat ash, Slag, Gypsum of Power Plants, Chemical Fertilizer Plants Raw Materials for Construction Materials. Law Library Online. Available online: https://thuvienphapluat.vn/van-ban/Van-hoa-Xa-hoi/Quyet-dinh-1696-QD-TTg-phe-duyet-Chuong-trinh-hanh-dong-quoc-gia-ve-binh-dang-gioi-2016-2020-292378.aspx (accessed on 23 September 2014).
Types | Name | Grain Size (mm) | Ak (%) | Wpt (%) | Vk (%) | Sk | Qk (Cal/g) | |||
---|---|---|---|---|---|---|---|---|---|---|
Steam Coal | Average | Limit | Average | Max | Average | Average | Max | Min | ||
3 NH | NH 080 | 0.25 | 13 | 11.15 | 19 | 23 | 7 | 2.5 | 4 | 6650 |
4 NH | NH 090 | 0.25 | 20 | 15.01 | 19 | 23 | 7 | 2.5 | 4 | 6000 |
5 NH | NH 100 | 0.25 | 30 | 24.01 | 19 | 23 | 7 | 2.5 | 4 | 5400 |
6 NH | NH 110 | 0.25 | 34 | 32.01 | 19 | 23 | 7 | 2.5 | 4 | 4800 |
Types | Name | Grain Size (mm) | Ak (%) | Wpt (%) | Vk (%) | Sk | Qk (Cal/g) | |||
---|---|---|---|---|---|---|---|---|---|---|
Steam Coal | Average | Limit | Average | Max | Average | Average | Max | Min | ||
3a KH | KH 08A | 0.25 | 13 | 10.15 | 10.5 | 14 | 10 | 2 | 3 | 6650 |
3b KH | KH 08B | 0.25 | 16 | 15.01 | 10.5 | 14 | 10 | 2 | 3 | 6400 |
4a KH | KH 09A | 0.25 | 20 | 18.01 | 10.5 | 14 | 10 | 2 | 3 | 6050 |
4b KH | KH 09B | 0.25 | 24 | 22.01 | 10.5 | 14 | 10 | 2 | 3 | 5750 |
5 KH | KH 100 | 0.25 | 30 | 26.01 | 10.5 | 14 | 10 | 2 | 3 | 5200 |
6 KH | KH 110 | 0.25 | 36 | 33.01 | 10.5 | 14 | 10 | 2 | 3 | 4650 |
No. | Factor | Method | Unit | Result | Vietnam National Standard 07-2009/MONRE |
---|---|---|---|---|---|
1 | pH | ASTM 4980-1989 | - | 11.3 | 2.0–12.5 |
2 | As | US EPA method 1311 & 6020B | mg/L | 0.018 | 2 |
3 | Ba | US EPA method 1311 & 6020B | mg/L | 0.22 | 100 |
4 | Cd | US EPA method 1311 & 6020B | mg/L | 0.007 | 0.5 |
5 | Pb | US EPA method 1311 & 6020B | mg/L | 0.011 | 15 |
6 | Hg | US EPA method 1311 & 6020B | mg/L | <0.005 | 0.2 |
7 | Ni | US EPA method 1311 & 6020B | mg/L | 0.052 | 70 |
8 | Se | US EPA method 1311 & 6020B | mg/L | 0.037 | 1 |
9 | Cr (VI) | US EPA method 1311; TCVN 6658:2000 | mg/L | 0.05 | 5 |
10 | Total CN | US EPA method 9013A; SMEWW 4500-CN.E | mg/kg | <0.005 | 590 |
No. | Factor | Method | Unit | Result | Vietnam National Standard 07-2009/MONRE |
---|---|---|---|---|---|
1 | pH | ASTM 4980-1989 | - | 11.3 | 2.0–12.5 |
2 | As | US EPA method 1311 & 6020B | mg/L | 0.018 | 2 |
3 | Ba | US EPA method 1311 & 6020B | mg/L | 0.22 | 100 |
4 | Cd | US EPA method 1311 & 6020B | mg/L | 0.007 | 0.5 |
5 | Pb | US EPA method 1311 & 6020B | mg/L | 0.011 | 15 |
6 | Hg | US EPA method 1311 & 6020B | mg/L | <0.005 | 0.2 |
7 | Ni | US EPA method 1311 &6020B | mg/L | 0.052 | 70 |
8 | Se | US EPA method 1311 &6020B | mg/L | 0.037 | 1 |
9 | Cr (VI) | US EPA method 1311; TCVN 6658:2000 | mg/L | 0.05 | 5 |
10 | Total CN | US EPA method 9013A; SMEWW 4500-CN.E | mg/kg | <0.005 | 590 |
No. | Results | ||||
---|---|---|---|---|---|
Noise (dBA) | Floating Dust (mg/m3) | NO2 (mg/m3) | SO2 (mg/m3) | CO (mg/m3) | |
1 | 72.2 | 0.14 | <0.08 | <0.026 | <5 |
2 | 78.5 | 0.28 | <0.08 | <0.026 | <5 |
3 | 83.9 | 0.33 | <0.08 | <0.026 | <5 |
4 | 70.7 | 0.21 | <0.08 | <0.026 | <5 |
5 | 64.6 | 0.36 | <0.08 | <0.026 | <5 |
6 | 65.4 | 0.11 | <0.08 | <0.026 | <5 |
7 | 60.7 | 0.11 | <0.08 | <0.026 | <5 |
3733/2002/QDBYT | 85 | 4 | 10 | 10 | 40 |
No. | Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Noise (dBA) | Floating Dust (mg/m3) | NO2 (mg/m3) | SO2 (mg/m3) | CO (mg/m3) | |||||||
1 | 63.4 | 0.1 | <0.08 | <0.026 | <5 | ||||||
2 | 59.2 | 0.1 | <0.08 | <0.026 | <5 | ||||||
3 | 61.2 | 0.17 | <0.08 | <0.026 | <5 | ||||||
4 | 59.5 | 0.11 | <0.08 | <0.026 | <5 | ||||||
5 | 63.5 | 0.24 | <0.08 | <0.026 | <5 | ||||||
6 | 59.8 | <0.1 | <0.08 | <0.026 | <5 | ||||||
3733/2002/QDBYT | 85 | 4 | 10 | 10 | 40 |
No. | Analytical Criterion | Units | Results | Vietnam National Standard 40-2011/MONRE | |
---|---|---|---|---|---|
MN1 | MN2 | ||||
1 | pH | - | 7.8 | 7.4 | 5.5–9.0 |
2 | Temperature | °C | 25.2 | 22.2 | 40 |
3 | BOD5 | mg/L | <4 | <2 | 50 |
4 | TSS | mg/L | 3.8 | 2.6 | 100 |
5 | Hardness | mg/L | 433 | 361 | - |
6 | Cr | mg/L | <0.0005 | <0.0005 | 0.1 |
7 | Pb | mg/L | <0.0005 | <0.0005 | 0.5 |
8 | Hg | mg/L | <0.0005 | <0.0005 | 0.01 |
9 | Fe | mg/L | <0.3 | <0.3 | 5 |
11 | Cr | mg/L | 8.1 | 9.8 | 1000 |
12 | SO42− | mg/L | 58.8 | 24.7 | - |
13 | NH4-N | mg/L | <0.05 | <0.05 | 10 |
14 | Total N | mg/L | 4.5 | 8.4 | 40 |
15 | Total P | mg/L | 0.33 | <0.3 | 6 |
16 | Oil | mg/L | <0.3 | 0.3 | 10 |
CaO | Si2O | Al2O3 | Fe2O3 | SO3 | |
---|---|---|---|---|---|
OPC (Portland cement) | 60–67% | 17–25% | 3–8% | 0.5–6% | 1–3% |
CSA (Denka) | 52.8% | 1.5% | 16.1% | 0.5% | 27.5% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thenepalli, T.; Ngoc, N.T.M.; Tuan, L.Q.; Son, T.H.; Hieu, H.H.; Thuy, D.T.N.; Thao, N.T.T.; Tam, D.T.T.; Huyen, D.T.N.; Van, T.T.; et al. Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam. Energies 2018, 11, 2018. https://doi.org/10.3390/en11082018
Thenepalli T, Ngoc NTM, Tuan LQ, Son TH, Hieu HH, Thuy DTN, Thao NTT, Tam DTT, Huyen DTN, Van TT, et al. Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam. Energies. 2018; 11(8):2018. https://doi.org/10.3390/en11082018
Chicago/Turabian StyleThenepalli, Thriveni, Nguyen Thi Minh Ngoc, Lai Quang Tuan, Trinh Hai Son, Ho Huu Hieu, Dang Tran Nhu Thuy, Nguyen Thi Thanh Thao, Duong Thi Thanh Tam, Doan Thi Ngoc Huyen, Tran Tan Van, and et al. 2018. "Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam" Energies 11, no. 8: 2018. https://doi.org/10.3390/en11082018
APA StyleThenepalli, T., Ngoc, N. T. M., Tuan, L. Q., Son, T. H., Hieu, H. H., Thuy, D. T. N., Thao, N. T. T., Tam, D. T. T., Huyen, D. T. N., Van, T. T., Chilakala, R., & Ahn, J. W. (2018). Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam. Energies, 11(8), 2018. https://doi.org/10.3390/en11082018