Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Implementation
2.1.1. Survey
2.1.2. Literature Review
2.1.3. Addition of Further Variables
2.2. Correlation Analysis and Implementation of Regression Models
- The strength of the relation or the value of the coefficient ρ, according to the following ranking: weak 0.1 < ρ < 0.3; moderate 0.3 < ρ < 0.6; strong 0.6 < ρ < 0.9.
- The reliability of the relation or the p-value: only significant correlations with a confidence level of 0.05 were accepted.
- Possible multicollinearities or relations between independent variables themselves, which could make a future regression analysis incorrect.
2.3. Ramp Function and Geographical Implementation
3. Results and Discussion
3.1. Direct Survey and Literature Analysis
3.2. Database Implementation
3.3. Correlation and Regression Analysis
3.4. Pruning Biomass Potential for Vineyard and Olive
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union—An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef]
- IEA Bioenergy Task 42. BioEconomy Survey 2014. National BioEconomy Strategies IEA Bioenergy Implementing Agreement Countries. Available online: http://task42.ieabioenergy.com/ (accessed on 23 May 2018).
- European Parliament Resolution of 2 July 2013 on Innovating for Sustainable Growth: A Bioeconomy for Europe. 2012/2295(INI). Available online: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2013-0302+0+DOC+XML+V0//EN (accessed on 23 May 2018).
- Bundschuh, J.; Chen, G. (Eds.) Sustainable Energy Solutions in Agriculture; CRC Press: Rome, Italy, 2018; ISBN 9781138001183. [Google Scholar]
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028 (accessed on 23 May 2018).
- FAO. The role of wood energy in Europe and OECD. In Wood Energy Today for Tomorrow; FAO, Forestry Department: Rome, Italy, 1997. [Google Scholar]
- García-Galindo, D.; Cay Villa-Ceballos, F.; Vila-Villarroel, L.; Pueyo, E.; Sebastián, F. Seeking for Ratios and Correlations from Field data for Improving Biomass Assessments for Agricultural Pruning in Europe. Method and Results. In Proceedings of the 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016. [Google Scholar]
- Colonna, N.; Macrì, A.; Regina, P. I Sottoprodotti Legnosi ed Erbacei del Settore Agricolo Italiano. In Proceedings of the Conference I Sottoprodotti Agroforestali e Industriali a Base Rinnovabile, Università Politecnica delle Marche, Ancona, Italy, 26–27 September 2013. [Google Scholar]
- Vis, M.W.; van den Berg, D. Harmonization of biomass resource assessments. Volume I. Best Practices and Methods Handbook, Bee Project. Tech. Rep. 2010. [Google Scholar] [CrossRef]
- Garcia-Galindo, D.; Pascual, J.; Asín, J.; García-martín, A. Variability and Confidence Interval in the Estimation of Agricultural Residual Biomass at a Municipality Level in Teruel Province (Spain). In Proceedings of the 15th European Biomass Conference and Exhibition, Berlin, Germany, 7–11 May 2007. [Google Scholar]
- Garcìa-Galindo, D.; Gòmez-Palmero, M.E.P.; Germer, S.; Pari, L.; Alfano, V.; Dyjakon, A.; Sagarna, J.; Rivera, S.; Poutrin, C. Agricultural Pruning as Biomass Resource: Generation, Potentials and Current Fates. An approach to its state in Europe. In Proceedings of the 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016; pp. 1579–1595. [Google Scholar]
- Caruso, T.; Proietti, P. Modelli d’impianto, Forme di Allevamento e Criteri di Potatura per la Nuova Olivicoltura. 2011. Available online: http://dspace.unitus.it/dspace/handle/2067/2600 (accessed on 23 May 2018).
- Tous, J. Olive planting systems and mechanization. Olivebioteq 2014, 181. [Google Scholar] [CrossRef]
- Jones, H.G. How do rootstocks control shoot water relations? New Phytol. 2012, 194, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.; Miller, A.J. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.D. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity. N. Z. J. Crop Hortic. Sci. 1995, 23, 373–382. [Google Scholar] [CrossRef]
- Gregory, P.J.; Atkinson, C.J.; Bengough, A.G.; Else, M.A.; Fernández-Fernández, F.; Harrison, R.J.; Schmidt, S. Contributions of roots and rootstocks to sustainable, intensified crop production. J. Exp. Bot. 2013, 64, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Di Vaio, C.; Marra, F.P.; Scaglione, G.; La Mantia, M.; Caruso, T. The effect of different vigour olive clones on growth, dry matter partitioning and gas exchange under water deficit. Sci. Hortic. 2012, 134, 72–78. [Google Scholar] [CrossRef]
- Nardini, A.; Gascó, A.; Raimondo, F.; Gortan, E.; Lo Gullo, M.A.; Caruso, T.; Salleo, S. Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency? Tree Physiol. 2006, 26, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Rugini, E.; De Pace, C.; Gutiérrez-Pesce, P.; Muleo, R. Olea. In Wild Crop Relatives: Genomic and Breeding Resources; Springer: Berlin/Heidelberg, Germany, 2011; pp. 79–117. [Google Scholar]
- Corso, M.; Bonghi, C. Grapevine rootstock effects on abiotic stress tolerance. Plant Sci. Today 2014, 1, 108–113. [Google Scholar] [CrossRef]
- Granett, J.; Walker, M.A.; Kocsis, L.; Omer, A.D. Biology and management of grape phylloxera. Annu. Rev. Entomol. 2001, 46, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Serra, I.; Strever, A.; Myburgh, P.A.; Deloire, A. The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Tramontini, S.; Vitali, M.; Centioni, L.; Schubert, A.; Lovisolo, C. Rootstock control of scion response to water stress in grapevine. Environ. Exp. Bot. 2013, 93, 20–26. [Google Scholar] [CrossRef]
- Garcìa-Galindo, D.; López, E.; Gomez, M.; Sebastián, F.; Gebresenbet, G.; Jirjis, R.; Kern, J.; Germer, S.; Pari, L.; Suardi, A.; et al. EuroPruning Project: Summary of Final Results. In Proceedings of the 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016. [Google Scholar]
- Velázquez-Martí, B.; Fernández-González, E. Analysis of the process of biomass harvesting with collecting chippers fed by pick up headers in plantations of olive trees. Biosyst. Eng. 2009, 104, 184–190. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass Bioenergy 2011, 35, 3453–3464. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; López-Cortés, I.; Salazar-Hernández, D.M. Dendrometric analysis of olive trees for wood biomass quantification in Mediterranean orchards. Agrofor. Syst. 2014, 88, 755–767. [Google Scholar] [CrossRef]
- Scarlat, N.; Blujdea, V.; Dallemand, J.F. Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenergy 2011, 35, 1995–2005. [Google Scholar] [CrossRef]
- Scarlat, N.; Martinov, M.; Dallemand, J.F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.F. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renew Sustain. Energy Rev. 2013, 19, 666–677. [Google Scholar] [CrossRef]
- ANPA. I Rifiuti del Comparto Agroalimentare. Rapporti 11/2001; 2011. Available online: http://www.apat.gov.it/site/_contentfiles/00038200/38230_Rapporti_01_11.pdf (accessed on 23 May 2018).
- Pantaleo, A.; Carone, M.T.; Pellerano, A. Olive residues to energy chains in the Apulia region. Part I. Financial appraisal of energy conversion routes. J. Agric. Eng. 2009, 1, 37–47. [Google Scholar]
- Motola, V.; Colonna, N.; Alfano, V.; Gaeta, M.; Sasso, S.; De Luca, V.; De Angelis, C.; Soda, A.; Braccio, G. Censimento Potenziale Energetico Biomasse, Metodo Indagine, Atlante Biomasse su WEB-GIS. Report ENEA—Ricerca Sistema Elettrico, RSE/2009/167. Available online: http://editors.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/censimento-biomasse/rse167.pdf (accessed on 23 May 2018).
- IIASA/FAO. Global Agro-Ecologycal Zones (GAEZ v3.0). IIASA (Laxenburg, Austria) and FAO. 2012. Available online: http://www.gaez.iiasa.ac.at (accessed on 23 May 2018).
- CGIAR. Ecocrop Database. CGIAR Consortium of International Agricultural Research Centers. 2012. Available online: http://gisweb.ciat.cgiar.org/ClimateChange/EcoCropFB (accessed on 23 May 2018).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Nati, C. Harvesting vineyard pruning residues for energy use. Biosyst. Eng. 2009, 105, 316–322. [Google Scholar] [CrossRef]
- Spinelli, R.; Picchi, G. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour. Technol. 2010, 101, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, R.; Nati, C.; Pari, L.; Mescalchin, E.; Magagnotti, N. Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Appl. Energy 2012, 89, 374–379. [Google Scholar] [CrossRef]
- Magagnotti, N.; Pari, L.; Picchi, G.; Spinelli, R. Technology alternatives for tapping the pruning residue resource. Bioresour. Technol. 2013, 128, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, S.; Cristoforetti, A.; Mescalchin, E.; Spinelli, R. Recovery of Pruning Waste for Energy Use: Agronomic, Economic and Ecological Aspects. In Proceedings of the Central European Biomass Conference, Graz, Austria, 26–29 January 2011. [Google Scholar]
- Recchia, L.; Daou, M.; Rimediotti, M.; Cini, E.; Vieri, M. New shredding machine for recycling pruning residuals. Biomass Bioenergy 2009, 33, 149–154. [Google Scholar] [CrossRef]
- Cotana, S.; Cavalaglio, G. Recovery of Vineyards Pruning Residues in an Agro-Energetic Chain. In Proceedings of the 15th European Biomass Conference and Exhibition, Berlin, Germany, 7–11 May 2007. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Nati, C.; Cantini, C.; Sani, G.; Picchi, G.; Biocca, M. Integrating olive grove maintenance and energy biomass recovery with a single-pass pruning and harvesting machine. Biomass Bioenergy 2011, 35, 808–813. [Google Scholar] [CrossRef]
- Acampora, A.; Croce, S.; Assirelli, S.; Del Giudice, A.; Suardi, A.; Spinelli, R.; Pari, L. Product contamination and harvesting losses from mechanized recovery of olive tree pruning residues for energy use. Renew. Energy 2013, 53, 350–353. [Google Scholar] [CrossRef]
- Libutti, A.; Garofalo, P.; Rovas, D.; Zabniotou, A.; Monteleone, M. Management of Pruning Residues for both Renewable Energy and Soil Fertility. In Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 23–26 June 2014. [Google Scholar]
- Moscatello, S.; Proietti, S.; Baldicchi, A.; La Cara, F.; Famiani, F.; Battistelli, A. Vitis Pruning Material: Variability in Quantity and Quality of the Lignocellulosic Material Among 42 Varieties Cultivated in Italy. In Proceedings of the 19th European Biomass Conference and Exhibition, Berlin, Germany, 6–10 June 2011. [Google Scholar]
- Boschiero, M.; Neri, P.; Kelderer, M.; Zerbe, S. Apple Orchard’s Woody Residues as a Potential Bioenergy Source: A LCA Case Study in South Tyrol (Italy). In Proceedings of the 21st European Biomass Conference and Exhibition, Copenhagen, Denmark, 3–7 June 2013. [Google Scholar]
- Prando, D.; Boschiero, M.; Campana, D.; Gallo, R.; Baratieri, M.; Comiti, F.; Mazzetto, F.; Zerbe, S. Woody Biomass in South Tyrol: Feedstock Availability and Characterization of Different Conversion Processes for Energy Production. In Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 23–26 June 2014. [Google Scholar]
- Trabucco, A.; Zomer, R.J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. CGIAR Consortium for Spatial Information. 2009. Available online: http://www.csi.cgiar.org (accessed on 23 May 2018).
- EEA. The Biogeographical Regions Dataset. European Environment Agency. 2011. Available online: http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe (accessed on 23 May 2018).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: New York, NY, USA, 1988. [Google Scholar]
- AA.VV. Studio conclusivo “Progetto Biomasse ENAMA”. Parte 1—Biomasse ed Energia. Capitolo 2—Disponibilità Delle Biomasse, ENAMA—MiPAAF. 2012. Available online: http://www.progettobiomasse.it/it/studio.php (accessed on 23 May 2018).
- A.I.G.R. (Associazione Italiana di Genio Rurale). Potenzialità energetica da biomasse nelle regioni italiane; Rapporto conclusivo, Contratto A.I.G.R.—ENEA del 03 dicembre 1992—Pratica 00073; A.I.G.R.: Roma, Italy, 1994. [Google Scholar]
- Di Blasi, C.; Tanzi, V.; Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenergy 1997, 12, 321–331. [Google Scholar] [CrossRef]
Species | Site | Training System | Planting Pattern | Irrigation System | Pruning Frequency | Pruning Period | RSR (t ha−1 y−1) |
---|---|---|---|---|---|---|---|
Olive tree | Caltanissetta (South) | Vase | 12 × 12 | No | Biannual | December–January | 1.1–1.4 |
Olive tree | Sabina (Center) | Vase | 6 × 6 | No | Annual (60%) | February–March–April | 2.1–2.8 |
Olive tree | Spoleto (Center) | Vase | 6 × 7 | No | Biannual | February–March–April | 2.1–2.8 |
Vineyard | Biella (North) | Espalier | 4 × 4 | No | Annual | November–December–January–February | 0.6–0.8 |
Vineyard | Castel Bolognese (North) | Pergoletta | 6.6 × 1.3 | No | Annual | December–January | 1.5–2.8 |
Vineyard | Vittoria (South) | Tendone | 2.5 × 2.5 | Drip | Annual | November | 4.8–6.4 |
Hazelnuts | Viterbo (Center) | Vase | 5 × 6 | No | Annual | October–November–December | 1.27–3.03 |
Peach | Vercelli (North) | Vase | 5 × 4 | Surface | Annual | February–March–April | 2.5 |
Peach | Ravenna (North) | Vasetto ritardato | 5.5 × 3 | Drip | Annual | February–March–July | 0.5–0.6 |
Citrus | Sibari (South) | Globe | 5 × 5 | Drip | Annual | June–July | 8 |
Citrus | Vittoria (South) | Globe | 5 × 5 | Drip | Annual | June | 2 |
Plum | Ravenna (North) | Palmetta libera | 4.3 × 2.5 | Drip | Annual | March–April | 0.7–0.8 |
Apple | Vercelli (North) | Solaxe | 3.5 × 1.5 | Surface | Annual | November–December–January–February–March | 5–7 |
Crop | Records | Locations | Mean RSR (t ha−1) | Minimum | Maximum |
---|---|---|---|---|---|
Vineyard | 40 | 10 | 1.15 ± 0.51 | 0.11 | 2.57 |
Olive | 12 | 10 | 1.90 ± 1.44 | 0.35 | 5.46 |
Pome fruit | 13 | 3 | 1.88 ± 0.87 | 1.00 | 5.64 |
TOTAL | 65 | 23 | - | - | - |
Factor Type | Source | Variable Implemented | Type of Variable/Comments |
---|---|---|---|
Crop | Literature & Surveys | 3 variables: Species (Nom), Crop group (Nom), Age (Cont) | Specific data of the crop |
Crop management | Literature & Surveys | 4 variables: Density (Cont), Training system (Nom), Irrigation (Dic), Intensification (Ord) | Agronomic |
Climate | [36] | 1 climate type: Thermal climate (Ord) | General variable (non-crop specific) |
Agro-climatic indicators (ACI) | [36] | 3 variables (all Cont): LGP (length growing period), NPP (net primary productivity) and reference Evapotranspiration (ETP) | General |
Agro-climatic potentials (ACP) | [36] | 3 variables (all Cont): ACP_ab (*), ACP_rel (*), ACP_OL | Two general variables and one agroclimatic may be specific for Olive production. These variables evaluate potentials of a crop given specific climatic conditions |
Agro-ecological potentials (AEP) | [36] | 10 variables (all Cont): AEP_ab (*), AEP_rel (*), AEP_OL, AEP_Sidx (*), AEP_Sidx_OL, AEP_AG (*), AEP_AG_rel (*), AEP_AG_OL, AEP_AG_Sidx (*), AEP_AG_Sidx_OL | 6 variables correspond to a reference crop potential. 4 specific for olive. These variables evaluate potentials of a crop given specific climatic and soil conditions |
Actual yields (YLDs) | [36] | 5 variables (all Cont.): Ylds_ab (*), Ylds_rel (*), Ylds_OL_ab, Yld_gaps (*), Yld_gaps_OL | 3 of the variables correspond to a reference crop. Yields refer to downscaled actual yield utilised to build the actual yields of a reference crop. Yield gaps (between agro-ecological and actual potentials) |
Agro-climatic indicators (ACI) | [37] | 2 variables (all Cont.): Global-Aridity index (AR_idx), Global Potential Evapotranspiration (PET_idx) | General |
Agro-climatic potentials (ACP) | [52] | 4 variables (all Cont.): mECO_Wclim, ECO_wclim_th, ECO_ccm, ECO_ccm_th | Ecocrop suitability index represent the suitability (0 to 100%) of a crop. Two climatic databases are utilised by Ecocrop, producing two different datasets. When the moisture regime is not evaluated, variable is only thermal (th) |
Climate | [38] | 1 variable: Köppen-Geiger climate classification (Ord) | General |
Climate | [53] | European biogeographical regions (Ord) | General |
Crop | Sample Size | Parameter | ρ Spearman | Confidence (p-Value) 1 |
---|---|---|---|---|
Vineyard | 40 | Intensification | 0.357 | * |
Koeppen climates | 0.335 | * | ||
PET | 0.450 | ** | ||
ACP_ab | 0.477 | ** | ||
Ecocrop (Wclim) | 0.481 | ** | ||
Ecocrop (ccm) | 0.431 | ** | ||
Olive | 12 | Intensification | −0.418 | ** |
Koeppen climates | 0.461 | n.s. | ||
Ecocrop (Wclim) | 0.367 | n.s. | ||
Pome Fruit | 13 | ACP_ab | 0.428 | n.s. |
Ecocrop (Wclim) | 0.299 | n.s. |
Crop | Full Database | Database Aggregated Values by GIS Cell |
---|---|---|
Vineyard | 40 | 10 |
Olive | 12 | 10 |
Pome fruit | 13 | 2 |
TOTAL | 65 | 22 |
Crop | Parameter | ρ Spearman | Confidence (p-Value) 1 |
---|---|---|---|
Vineyard | ACP_ab | 0.636 | * |
Ecocrop (Wclim) | 0.768 | ** | |
Ecocrop (ccm) | 0.661 | * | |
Olive | Koeppen climate | 0.418 | n.s. |
Ecocrop (Wclim) | 0.395 | n.s. |
R | R2 | Standard Error |
0.814 | 0.662 | 0.323 |
F Value | Sig | Durbin-Watson |
15.665 | 0.04 | 2.45 |
Regression Model | ||
Y = Bo + B1 x X Bo = 0.534; B1 = 0.023 Biomass = 0.534 + 0.023xEcocrop (Wclim) |
R | R2 | Standard Error |
0.610 | 0.294 | 1.26 |
F Value | Sig | Durbin-Watson |
4.79 | 0.06 | 1.51 |
Regression Model | ||
Y = Bo + B1 x X Bo = −1.024; B1 = 0.074 Biomass = −1.024 + 0.074xEcocrop (Wclim) |
Crop | Agroclimatic Variable (X Axis) | ECOL Lower Threshold (X; Y) | ECOU Upper Threshold (X; Y) | Equation |
---|---|---|---|---|
Vineyard | Ecocrop | 10; 0.764 | 70; 2.14 | Y = 0.534 + 0.023 * X |
Olive | 20; 0.456 | 60; 3.41 | Y = −1.024 + 0.074 * X |
Study | Reference Year | Vineyard (kt d.m. year−1) | Olive (kt d.m. year−1) |
---|---|---|---|
Colonna et al., 2013 | 2011 | 1436.8 | 2018.2 |
ENAMA, 2012 | average 2006–2009 | 1123.4 | 1547.7 |
EuroPruning | 2011 | 845.5 | 2607.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pari, L.; Alfano, V.; Garcia-Galindo, D.; Suardi, A.; Santangelo, E. Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions. Energies 2018, 11, 1365. https://doi.org/10.3390/en11061365
Pari L, Alfano V, Garcia-Galindo D, Suardi A, Santangelo E. Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions. Energies. 2018; 11(6):1365. https://doi.org/10.3390/en11061365
Chicago/Turabian StylePari, Luigi, Vincenzo Alfano, Daniel Garcia-Galindo, Alessandro Suardi, and Enrico Santangelo. 2018. "Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions" Energies 11, no. 6: 1365. https://doi.org/10.3390/en11061365
APA StylePari, L., Alfano, V., Garcia-Galindo, D., Suardi, A., & Santangelo, E. (2018). Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions. Energies, 11(6), 1365. https://doi.org/10.3390/en11061365