Optimizing the Organic Solar Cell Manufacturing Process by Means of AFM Measurements and Neural Networks
Abstract
:1. Introduction
2. Device Fabrication Workflow
- technology selection;
- geometric design;
- prototype manufacturing;
- AFM measurement;
- electrical characterization;
- prototype testing;
- prototype evaluation;
- mass production or rejection.
3. Experimental Prodcedure
3.1. Device Manufacturing
3.2. Morphological Study
3.3. AFM Measurements
3.4. Data Acquisition
- PEDOT:PSS thickness ();
- PCBM:P3HT thickness ();
- overall device thickness (t);
- overall device length (l);
- overall device height (h).
4. Neural-Network-Based Modeling
Neural Networks as Universal Approximators
5. The Implemented Neural Model and Results
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lo Sciuto, G.; Capizzi, G.; Coco, S.; Shikler, R. Geometric Shape Optimization of Organic Solar Cells for Efficiency Enhancement by Neural Networks. In Advances on Mechanics, Design Engineering and Manufacturing, Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2016), Catania, Italy, 14–16 September, 2016; Eynard, B., Nigrelli, V., Oliveri, S.M., Peris-Fajarnes, G., Rizzuti, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 789–796. [Google Scholar]
- Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Tramontana, E. A Multithread Nested Neural Network Architecture to Model Surface Plasmon Polaritons Propagation. Micromachines 2016, 7, 110. [Google Scholar] [CrossRef]
- Bonanno, F.; Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Pappalardo, G.; Tramontana, E. A Cascade Neural Network Architecture Investigating Surface Plasmon Polaritons Propagation for Thin Metals in OpenMP. In Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 22–33. [Google Scholar]
- Barnea, S.N.; Lo Sciuto, G.; Hai, N.; Shikler, R.; Capizzi, G.; Woźniak, M.; Połap, D. Photo-Electro Characterization and Modeling of Organic Light-Emitting Diodes by Using a Radial Basis Neural Network. In Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 378–389. [Google Scholar]
- Ye, L.; Hu, H.; Ghasemi, M.; Wang, T.; Collins, B.A.; Kim, J.H.; Jiang, K.; Carpenter, J.H.; Li, H.; Li, Z.; et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhao, W.; Li, S.; Mukherjee, S.; Carpenter, J.H.; Awartani, O.; Jiao, X.; Hou, J.; Ade, H. High-Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multi-Length Scale Morphology and Device Performance. Adv. Energy Mater. 2017, 7, 1602000. [Google Scholar] [CrossRef]
- Chen, G.; Ning, Z.; Agren, H. Nanostructured Solar Cells. Nanomaterials 2016, 6, 145. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, S.; Pignataro, B. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures. Materials 2013, 6, 1159–1190. [Google Scholar] [CrossRef] [PubMed]
- Hakim, F.; Alam, M.K. Improvement of photo-current density of P3HT:PCBM bulk heterojunction organic solar cell using periodic nanostructures. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 170–174. [Google Scholar]
- Hakim, F.; Alam, M.K. Optimization and performance analysis of PCBM acceptor-based bulk heterojunction organic solar cells using different donor materials. In Proceedings of the 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2016; pp. 127–130. [Google Scholar]
- Chen, H.; Miao, J.; Yan, J.; He, Z.; Wu, H. Improving Organic Solar Cells Efficiency Through a Two-Step Method Consisting of Solvent Vapor Annealing and Thermal Annealing. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 66–72. [Google Scholar] [CrossRef]
- Duan, C.; Huang, F.; Cao, Y. Solution processed thick film organic solar cells. Polym. Chem. 2015, 6, 8081–8098. [Google Scholar] [CrossRef]
- Rahmani, R.; Karimi, H.; Ranjbari, L.; Emadi, M.; Seyedmahmoudian, M.; Shafiabady, A.; Ismail, R. Structure and thickness optimization of active layer in nanoscale organic solar cells. Plasmonics 2015, 10, 495–502. [Google Scholar] [CrossRef]
- Michal, P.; Vagaská, A.; Gombár, M.; Kmec, J.; Spišák, E.; Kučerka, D. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness. Sci. World J. 2015, 2015, 253568. [Google Scholar] [CrossRef] [PubMed]
- Rafique, S.; Abdullah, S.M.; Sulaiman, K.; Iwamoto, M. Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53. [Google Scholar] [CrossRef]
- Schiefer, S.; Zimmermann, B.; Würfel, U. Layout optimization of organic wrap through solar cells by combined electrical and optical modeling. Solar Energy Mater. Solar Cells 2013, 115, 29–35. [Google Scholar] [CrossRef]
- Nam, Y.M.; Huh, J.; Jo, W.H. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Solar Energy Mate. Solar Cells 2010, 94, 1118–1124. [Google Scholar] [CrossRef]
- Bello, L.L.; Mirabella, O.; Torrisi, N. Modelling and Evaluating traceability systems in food manufacturing chains. In Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, Modena, Italy, 14–16 June 2004; pp. 173–179. [Google Scholar]
- Liao, K.S.; Yambem, S.D.; Haldar, A.; Alley, N.J.; Curran, S.A. Designs and Architectures for the Next Generation of Organic Solar Cells. Energies 2010, 3, 1212–1250. [Google Scholar] [CrossRef] [Green Version]
- Kaya, M.; Hajimirza, S. Extremely Efficient Design of Organic Thin Film Solar Cells via Learning-Based Optimization. Energies 2017, 10, 1981. [Google Scholar] [CrossRef]
- Wang, J.; Tapio, K.; Habert, A.; Sorgues, S.; Colbeau-Justin, C.; Ratier, B.; Scarisoreanu, M.; Toppari, J.; Herlin-Boime, N.; Bouclé, J. Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices. Nanomaterials 2016, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Sciuto, G.; Capizzi, G.; Gotleyb, D.; Linde, S.; Shikler, R.; Woźniak, M.; Połap, D. Combining SVD and Co-occurrence Matrix Information to Recognize Organic Solar Cells Defects with an Elliptical Basis Function Network Classifier. Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 518–532. [Google Scholar]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Barron, A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 1993, 39, 930–945. [Google Scholar] [CrossRef]
- Haykin, S.S. Neural Nnetworks: A Comprehensive Foundation, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. Computational Intelligence: A Methodological Introduction; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zurada, J.M.; Malinowski, A.; Cloete, I. Sensitivity analysis for minimization of input data dimension for feedforward neural network. In Proceedings of the 1994 IEEE International Symposium on Circuits and Systems, London, UK, 30 May–2 June 1994; Volume 6, pp. 447–450. [Google Scholar]
- Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. arXiv, 2015; arXiv:1506.02626. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Shikler, R.; Woźniak, M. Optimizing the Organic Solar Cell Manufacturing Process by Means of AFM Measurements and Neural Networks. Energies 2018, 11, 1221. https://doi.org/10.3390/en11051221
Capizzi G, Lo Sciuto G, Napoli C, Shikler R, Woźniak M. Optimizing the Organic Solar Cell Manufacturing Process by Means of AFM Measurements and Neural Networks. Energies. 2018; 11(5):1221. https://doi.org/10.3390/en11051221
Chicago/Turabian StyleCapizzi, Giacomo, Grazia Lo Sciuto, Christian Napoli, Rafi Shikler, and Marcin Woźniak. 2018. "Optimizing the Organic Solar Cell Manufacturing Process by Means of AFM Measurements and Neural Networks" Energies 11, no. 5: 1221. https://doi.org/10.3390/en11051221
APA StyleCapizzi, G., Lo Sciuto, G., Napoli, C., Shikler, R., & Woźniak, M. (2018). Optimizing the Organic Solar Cell Manufacturing Process by Means of AFM Measurements and Neural Networks. Energies, 11(5), 1221. https://doi.org/10.3390/en11051221