Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of CuO/Glycerol Nanofluid
2.2. Preparation of CuO/Glycerol Nanofluid
2.3. Electrical Conductivity Measuring Device
2.4. Artificial Neural Network
2.5. Artificial Neural Network Design
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclatures
SOM | self-organizing map |
SEM | scanning electron microscopy |
ANN | artificial neural network |
MLP | multi-layer perceptron |
BP | back propagation |
MSE | mean square error |
References
- Xie, H.Q.; Wang, J.C.; Xi, T.G.; Liu, Y.; Ai, F.; Wu, Q.R. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Shirvan, M.K.; Ellahi, R.; Mamourian, M.; Moghiman, M. Effect of wavy surface characteristics on heat transfer in a wavy square cavity filled with nanofluid. Int. J. Heat Mass Transf. 2017, 107, 1110–1118. [Google Scholar] [CrossRef]
- Shirvan, K.M.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Power Technol. 2017, 313, 99–111. [Google Scholar] [CrossRef]
- Esfahani, J.A.; Akbarzadeh, M.; Rashidi, S.; Rosen, M.A.; Ellahi, R. Influences of wavy wall and nanoparticles on entropy generation in a plate heat exchanger. Int. J. Heat Mass Transf. 2017, 109, 1162–1171. [Google Scholar] [CrossRef]
- Hassan, M.; Zeeshan, A.; Majeed, A.; Ellahi, R. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J. Magn. Magn. Mater. 2017, 443, 36–44. [Google Scholar] [CrossRef]
- Rashidi, S.; Akar, S.; Bovand, M.; Ellahi, R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew. Energy 2018, 115, 400–410. [Google Scholar] [CrossRef]
- Ijaz, N.; Zeeshan, A.; Bhatti, M.M.; Ellahi, R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J. Magn. Magn. Mater. 2018, 250, 80–87. [Google Scholar]
- Mahanthesh, B.; Gireesha, B.J.; Reddy Gorla, R.S.; Abbasi, F.M.; Shehzad, S.A. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 2018, 417, 189–196. [Google Scholar] [CrossRef]
- Velasco, J.; Frascella, R.; Albarracin, R.; Burgos, J.C.; Dong, M.; Yang, L. Comparison of positive streamers in liquid dielectrics with and without nanoparticles simulated with finite-element software. Energies 2018, 11, 361. [Google Scholar] [CrossRef]
- Patil, M.S.; Seo, J.H.; Kang, S.J.; Lee, M.Y. Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies 2016, 9, 840. [Google Scholar] [CrossRef]
- Popa, C.; Nguyen, C.; Gherasim, I. New specific heat data for Al2O3 and CuO nanoparticles in suspension in water and Ethylene Glycol. Int. J. Therm. Sci. 2017, 111, 108–115. [Google Scholar] [CrossRef]
- Lopez-Munoz, G.; Pescador-Rojas, J.; Lopez, J.; Salazar, J.; Balderas-Lopez, J. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations. Nanoscale Res. Lett. 2012, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shoghl, S.N.; Jamali, M.; Moraveji, K.J. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp. Ther. Fluid Sci. 2016, 74, 339–346. [Google Scholar] [CrossRef]
- Adio, S.A.; Sharifpur, M.; Meyer, J.P. Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids. Bull. Mater. Sci. 2015, 38, 1345–1357. [Google Scholar] [CrossRef]
- Fal, J.; Sidorowicz, A.; Zyła, G. Electrical conductivity of ethylene glycol based nanofluids with different types of thulium oxide nanoparticles. Acta Phys. Pol. A 2017, 132, 146–148. [Google Scholar] [CrossRef]
- Zakaria, I.; Azmi, W.H.; Mohamed, W.A.N.W.; Mamat, R.; Najafi, G. Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application. Int. Commun. Heat Mass Transf. 2015, 61, 61–68. [Google Scholar] [CrossRef]
- Satriananda, I.N. Investigation on electrical conductivity enhancement of water based maghemite (γ-Fe2O3) nanofluids. Int. J. Mater. Sci. Appl. 2017, 6, 32–36. [Google Scholar]
- Abdolbaqi, M.K.; Azmi, W.H.; Mamat, R.; Sharma, K.V.; Najafi, G. Experimental investigation of thermal conductivity and electrical conductivity of bioglycol–water mixture based Al2O3 nanofluid. Appl. Therm. Eng. 2016, 102, 932–941. [Google Scholar] [CrossRef]
- Aguila, B.; Vasco, D.A.; Galvez’, P.; Zapata, P.A. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material. Int. J. Heat Mass Transf. 2018, 120, 1009–1019. [Google Scholar] [CrossRef]
- Aghayari, R.; Maddah, H.; Faramarzi, A.R.; Mohammadiun, H.; Mohammadiun, M. Comparison of the experimental and predicted data for thermal conductivity of iron oxide nanofluid using artificial neural networks. Nanomed. Res. J. 2016, 1, 15–22. [Google Scholar]
- Esfahani, M.A.; Toghraie, D. Experimental investigation for developing a new model for the thermal conductivity of silica/water-ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J. Mol. Liquids 2017, 232, 105–112. [Google Scholar] [CrossRef]
- Akbari, M.; Afrand, M.; Arshi, A.; Karimipour, A. An experimental study on rheological behavior of ethylene glycol based nanofluid: Proposing a new correlation as a function of silica concentration and temperature. J. Mol. Liquids 2017, 233, 352–357. [Google Scholar] [CrossRef]
- Nadooshan, A.A. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 87, 15–19. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Razi, P.; Hajmohammad, M.H.; Rostamian, S.H.; Sarsam, W.S.; Abbasian Arani, A.A.; Dahari, M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int. Commun. Heat Mass Transf. 2017, 82, 154–160. [Google Scholar] [CrossRef]
- Moghaddam, M.A.; Motahari, K. Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Appl. Therm. Eng. 2017, 123, 1419–1433. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Hassani Ahangar, M.R.; Rejvani, M.; Toghraie, D.; Hajmohammad, M.H. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int. Commun. Heat Mass Transf. 2016, 75, 192–196. [Google Scholar] [CrossRef]
- Vakili, M.; Karami, M.; Delfani, S.H.; Khosrojerdi, S.; Kalhor, K. Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions. J. Therm. Anal. Calorim. 2017, 129, 629–637. [Google Scholar] [CrossRef]
- Maddah, H.; Ghasemi, N. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks. Heat Mass Transf. 2017, 53, 3459–3472. [Google Scholar] [CrossRef]
- Yaïci, W.; Longo, M.; Entchev, E.; Foiadelli, F. Simulation study on the effect of reduced inputs of artificial neural networks on the predictive performance of the solar energy system. Sustainability 2017, 9, 1382. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Mohamend, A.; Homod, R.Z.; Shareef, H. Hybrid LSA-ANN based home energy management scheduling controller for residential demand response strategy. Energies 2016, 9, 716. [Google Scholar] [CrossRef]
- Lu, J.; Lu, F.; Huang, J. Performance estimation and fault diagnosis based on Levenberg–Marquardt algorithm for a turbofan rngine. Energies 2018, 11, 181. [Google Scholar]
- Hadadian, M.; Goharshadi, E.K.; Youssefi, A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-basednanofluids. J. Nanopart Res. 2014, 16, 2788. [Google Scholar] [CrossRef]
- Glover, B.; Whites, K.W.; Hong, H.; Mukherjee, A.; Billups, W.E. Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synth. Met. 2008, 158, 506–508. [Google Scholar] [CrossRef]
- Dong, M.; Shen, L.P.; Wang, H.; Wang, H.B.; Miao, J. Investigation on the electrical conductivity of transformer oil-based AlN nanofluid. J. Nanomater. 2013, 2013, 842963. [Google Scholar] [CrossRef]
- White, S.; Shih, A.; Pipe, K.P. Investigation of the electrical conductivity ofpropylene glycol-based ZnO nanofluids. Nanoscale Res. Lett. 2011, 6, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Kalpana Sarojini, K.G.; Manoj, S.V.; Singh, P.K.; Pradeep, T.; Das, S.K. Electrical conductivity of ceramic and metallic nanofluids. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 417, 39–46. [Google Scholar] [CrossRef]
- Azimi, H.R.; Taheri, R. Electrical conductivity of CuO nanofluids. Int. J. Nano Dimens. 2015, 6, 77–81. [Google Scholar]
- Kole, M.; Dey, T.K. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 2013, 113, 084307. [Google Scholar] [CrossRef]
- Ganguly, S.; Sikdar, S.; Basu, S. Experimental investigation of the effective electrical conductivity of aluminumoxide nanofluids. Powder Technol. 2009, 196, 326–330. [Google Scholar] [CrossRef]
- Goharshadi, K.; Azizi-Toupkanloo, H. Silver colloid nanoparticles: Ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol. 2013, 237, 97–101. [Google Scholar] [CrossRef]
- Konakanchi, H.; Vajjha, R.; Misra, D.; Das, D. Electrical conductivity measurements of nanofluids and development of new correlations. J. Nanosci. Nanotechnol. 2011, 11, 6788–6795. [Google Scholar] [CrossRef] [PubMed]
- Zawrah, M.F.; Khatta, R.M.; Girgis, L.G.; Daidamony, H.E.; Abdel Aziz, R.E. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016, 12, 227–234. [Google Scholar] [CrossRef]
- Bagheli, S.; Fadafan, H.K.; Orimi, R.L.; Ghaemi, M. Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol. 2015, 274, 426–430. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, L. Effect of thermal-electric cross coupling on heat transport in nanofluids. Energies 2017, 10, 123. [Google Scholar] [CrossRef]
No. | Temperature (°C) | Reference Conductance | Ave. of Reading | Error | Exp. UN |
---|---|---|---|---|---|
1 | 25 | 1413 | 1413 | 0 | ±8 |
2 | 25 | 80 | 81 | 1 | ±1 |
Parameter | Minimum | Average | Maximum |
---|---|---|---|
Temperature | 20 | 40 | 60 |
Volume fraction | 0 | 0.75 | 1.5 |
Nanoparticle size | 20 | 40 | 60 |
Sonication time | 0 | 50 | 100 |
Source | Nanofluid (s) | Dnp (nm) | φ (%) | T (°C) |
---|---|---|---|---|
Hadadian et al. [32] | graphene oxide-water graphene oxide-ethyleneglycol | 20 | 0.0001–0.0006 0.0001–0.0006 | 25–65 25–60 |
Glover et al. [33] | single-wall carbon nanotubes −50% DI water/50% ethylene glycol | - | 0–0.5 | 25–27 |
Dong et al. [34] | Aluminum-nitride-(AlN)-transformer oil | 50 | 0.1–0.5 | 25–60 |
White et al. [35] | ZnO-propylene glycol | 20–60 | 0–7 | 25 |
KalpanaSarojini et al. [36] | CuO-Water Cu-Water Al2O3-Water CuO-Ethylene glycol Cu-Ethylene glycol Al2O3-Ethylene glycol | 20–80 | 0.05–1 | 30–60 |
Azimi et al. [37] | CuO-Water | 89–112 | 0.12–0.18 | 25–50 |
Kole et al. [38] | graphene nanosheets-ethylene glycol-water | 20 | 0.041–0.395 | 10–70 |
Ganguly el al. [39] | Al2O3-Water | 13 | 0.005–0.03 | 25–45 |
Goharshadi et al. [40] | silver nanoparticles in distilled water and ethylene glycol | 200–800 | 0–2 | 20–50 |
Konakanchi et al. [41] | aluminum oxide-propylene glycol/water silicon dioxide propylene glycol/water zincoxide-propylene glycol/water. | 20–70 | 1–5 | 0–90 |
Zawrah et al. [42] | Al2O3-Water Al2O3/ Water + 0.01 wt% SDS Al2O3/Water + 0.01 wt% SDS MgO/Water MgO/Water + 0.01 wt% SDS MgO/Water + 0.01 wt% SDS ZnO/Water ZnO/Water + 0.01 wt% SDS ZnO/Water + 0.01 wt% SDS MWCNTs/Water MWCNTs/Water + 0.01 wt% SDS MWCNTsWater + 0.01 wt% SDS TiO2-Water TiO2/Water + 0.01 wt% SDS TiO2/Water + 0.01 wt% SDS CuO-Water CuO/Water + 0.01 wt% SDS CuO/Water + 0.01 wt% SDS | 10–20 | 0.01–2 | 20–70 |
Bagheli et al. [43] | Fe3O4/Water | 14.2 | 0–0.5 | 10–60 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghayari, R.; Maddah, H.; Ahmadi, M.H.; Yan, W.-M.; Ghasemi, N. Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions. Energies 2018, 11, 1190. https://doi.org/10.3390/en11051190
Aghayari R, Maddah H, Ahmadi MH, Yan W-M, Ghasemi N. Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions. Energies. 2018; 11(5):1190. https://doi.org/10.3390/en11051190
Chicago/Turabian StyleAghayari, Reza, Heydar Maddah, Mohammad Hossein Ahmadi, Wei-Mon Yan, and Nahid Ghasemi. 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions" Energies 11, no. 5: 1190. https://doi.org/10.3390/en11051190
APA StyleAghayari, R., Maddah, H., Ahmadi, M. H., Yan, W.-M., & Ghasemi, N. (2018). Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions. Energies, 11(5), 1190. https://doi.org/10.3390/en11051190