A Comparative Thermodynamic Study of Equilibrium Conditions for Carbon Deposition from Catalytic C–H–O Reformates
Abstract
:1. Introduction
2. Results
2.1. Ternary Diagrams for 3 and 30 Bar
2.2. Natural Gas Reformates
2.3. Liquified Petroleum Gas Reformates
3. Discussion
4. Materials and Methods
4.1. Basic Reactions and Energy Effects
4.2. Thermodynamic Equilibrium
4.3. Modeling Procedure and Scope
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Yu, Q.; Zhang, Y.; Zhang, J.; Liu, J.; Qin, Q. New process for hydrogen production from raw coke oven gas via sorption-enhanced steam reforming, Thermodynamic analysis. Int. J. Hydrogen Energy 2017, 42, 2914–2923. [Google Scholar] [CrossRef]
- Purima, P.; Jayanti, S. A high-efficiency auto-thermal system for on-board hydrogen production for low temperature PEM fuel cells using dual reforming of ethanol. Int. J. Hydrogen Energy 2016, 41, 13800–13810. [Google Scholar] [CrossRef]
- Sumrunronnasak, S.; Tantayanon, S.; Kiatgamolchai, S.; Sukonket, T. Improved hydrogen production from dry reforming reaction using a catalytic packed-bed membrane reactor with Ni-based catalyst and dense PdAgCu alloy memberane. Int. J. Hydrogen Energy 2016, 41, 2621–2630. [Google Scholar] [CrossRef]
- Araiza, D.G.; Gomez-Cortes, A.; Diaz, G. Partial oxidation of methanol over copper supported on nanoshaped ceria for hydrogen production. Catal. Today 2017, 282, 185–194. [Google Scholar] [CrossRef]
- Energy USD-EEAR. Hydrogen, Fuel Cells & Infrastructure Technologies Program. 2005. Available online: http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/ (accessed on 26 March 2018).
- Adiya, Z.I.S.G.; Dupont, V.; Mahmud, T. Steam reforming of shale gas in a packed bed reactor with and without chemical looping using nickel based oxygen carrier. Int. J. Hydrogen Energy 2018, 43, 6904–6917. [Google Scholar] [CrossRef]
- Tuna, C.E.; Silveira, J.L.; da Silva, M.E.; Boloy, R.M.; Braga, L.B.; Perez, N.P. Biogas steam reformer for hydrogen production: Evaluation of the reformer prototype and catalysts. Int. J. Hydrogen Energy 2018, 43, 2108–2120. [Google Scholar] [CrossRef]
- Alves, H.J.; Junior, C.B.; Niklevicz, R.R.; Frigo, E.P.; Frigo, M.S.; Cimbra-Araujo, C.H. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int. J. Hydrogen Energy 2013, 38, 5212–5225. [Google Scholar] [CrossRef]
- Loffler, D.G.; Taylor, K.; Mason, D. A light hydrocarbon fuel processor producing high purity hydrogen. J. Power Sources 2003, 117, 84–91. [Google Scholar] [CrossRef]
- Rostrup-Nielson, J.R. Catalytic Steam Reforming. Catalysis—Science and Technology; Anderson, J.R., Boudart, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 5, ISBN 978-3-642-93247-2. [Google Scholar]
- Ginsburg, J.M.; Pina, J.; Solh, T.E.I.; Lasa, H.I. Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models. Ind. Eng. Chem. Res. 2005, 44, 4846–4854. [Google Scholar] [CrossRef]
- Jaworski, Z.; Zakrzewska, B.; Pianko-Oprych, P. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: Updating for nanotubes. Rev. Chem. Eng. 2017, 33, 217–235. [Google Scholar] [CrossRef]
- Jaworski, Z.; Pianko-Oprych, P. On the deposition equilibrium of carbon nanotubes or graphite in the reforming processes of lower hydrocarbon fuels. Entropy 2017, 19, 650. [Google Scholar] [CrossRef]
- Jaworski, Z.; Pianko-Oprych, P. On nanotube carbon deposition at equilibrium in catalytic partial oxidation of selected hydrocarbon fuels. Int. J. Hydrogen Energy 2017, 42, 16920–16931. [Google Scholar] [CrossRef]
- Yaws, C.L. Yaws’ Critical Property Data for Chemical Engineers and Chemists. 2012. Available online: http://app.knovel.com/hotlink/toc/id:kpYCPDCECD/yaws-critical-property (accessed on 4 January 2017).
- Gozzi, D.; Iervolino, M.; Latini, A. The thermodynamics of the transformation of graphite to multiwalled carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 10269–10275. [Google Scholar] [CrossRef] [PubMed]
- Gozzi, D.; Latini, A.; Lazzarini, L. Experimental thermodynamics of high temperature transformations in single-walled carbon nanotube bundles. J. Am. Chem. Soc. 2009, 131, 12474–12482. [Google Scholar] [CrossRef] [PubMed]
- Outotec’s HSC Chemistry v.8.0 Software; Outotec (Finland) Oy, Research Center Pori: Pori, Finland, 2014.
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M. Introduction to Chemical Engineering Thermodynamics, 7th ed.; McGraw Hill Higher Education: New York, NY, USA, 2004; ISBN 0-07-310445-0. [Google Scholar]
- Castillo, J.; Grossmann, I.E. Computation of phase and chemical equilibria. Comput. Chem. Eng. 1981, 5, 99–108. [Google Scholar] [CrossRef]
Equation | kJ mol−1 | kJ mol−1 | Reaction (i) |
---|---|---|---|
CnH2n+2 + nH2O(g) = nCO + (2n + 1)H2 | ≅56.4 + 148.4 n | ≅61.6 + 79.6 n | (a) |
CnH2n+2 + nCO2 = 2nCO + (n + 1) H2 | ≅56.4 + 189.6 n | ≅61.6 + 108.2 n | (b) |
CnH2n+2 + n/2O2 = nCO + (n + 1) H2 | ≅56.4 − 93.4 n | ≅61.6 − 149.0 n | (c) |
CH4 = C(g) + 2H2 | 791.2 | 721.8 | (d) |
2CO = C(g) + CO2 | 544.2 | 551.2 | (e) |
CO + H2 = C(g) + H2O | 585.4 | 579.8 | (f) |
2H2 + CO2 = C(g) + 2H2O | 626.5 | 608.5 | (g) |
m C(g) = m Cg(g) | −716.7 m | −671.2 m | (h) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, Z.; Pianko-Oprych, P. A Comparative Thermodynamic Study of Equilibrium Conditions for Carbon Deposition from Catalytic C–H–O Reformates. Energies 2018, 11, 1177. https://doi.org/10.3390/en11051177
Jaworski Z, Pianko-Oprych P. A Comparative Thermodynamic Study of Equilibrium Conditions for Carbon Deposition from Catalytic C–H–O Reformates. Energies. 2018; 11(5):1177. https://doi.org/10.3390/en11051177
Chicago/Turabian StyleJaworski, Zdzisław, and Paulina Pianko-Oprych. 2018. "A Comparative Thermodynamic Study of Equilibrium Conditions for Carbon Deposition from Catalytic C–H–O Reformates" Energies 11, no. 5: 1177. https://doi.org/10.3390/en11051177
APA StyleJaworski, Z., & Pianko-Oprych, P. (2018). A Comparative Thermodynamic Study of Equilibrium Conditions for Carbon Deposition from Catalytic C–H–O Reformates. Energies, 11(5), 1177. https://doi.org/10.3390/en11051177