# A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems

^{*}

## Abstract

**:**

## 1. Introduction

- High power to weight ratio
- Better mechanical-electrical energy conversion efficiency
- High compatibility with the vehicle.

## 2. Direct Drive Regenerative Shock Absorber Systems and Technologies

#### 2.1. Magnet Arrangement Pattern Design

#### 2.2. Coil Design

## 3. In-Direct Drive Regenerative Shock Absorber Systems and Its Technologies

#### 3.1. Mechanical Motion Rectifier

#### 3.2. Fluid Motion Rectifier

## 4. Comparison between the Direct Drive System and Indirect Drive System

- The frequency, displacement and velocity amplitudes of the input excitation can be changed through the installed mechanism to achieve better energy harvesting and vehicle dynamics
- The increase of the input excitation speed through the speed amplifying mechanism can eliminate the need for a strong magnetic field, therefore the number of magnets can be reduced and undesired additional weight can be minimized.
- The layout of the system is more flexible as the mechanism of the indirect drive does not have to be inside the shock absorber.

## 5. Hybrid System and Its Technologies

## 6. Damping and Vehicle Dynamic Performance

#### 6.1. Damping Performance of the Direct Drive System

_{i}is the product of the magnetic field intensity and coil length; R is the total electrical resistance. Therefore, for a regenerative shock absorber with a damping coefficient of 1500 Ns/m on a passenger vehicle suspension and a 10 Ω electrical resistance, the electromagnetic coupling coefficient is calculated by Equation (2) and given by k

_{i}= 122.5 Tm which is a large value, meaning that it can only be realized using multiple strong magnet arrays and a coil that has sufficient length. The packaging space of a shock absorber is limited, thus making it difficult to provide enough damping performance with only a direct drive system.

#### 6.2. Damping Performance of the Indirect Drive Systems

## 7. Circuit and Control Algorithms for Enhancing Power Output and Vehicle Dynamics

#### 7.1. Power Maximization

#### 7.2. Vehicle Dynamic Control

_{sky}on the top of the sprung mass to dampen the vehicle body vibration from the road unevenness excitation [104]. Choi, Seong [77] designed a suspension system based on the electrorheological fluid damper with skyhook controller, the model of which is simulated to compare its simulation results with the experimental results in terms of attenuating vibration. It was found that the skyhook controller powered by the regenerative shock absorber system can significantly reduce the vibration. Ding, Wang [89] implemented Skyhook controller in the active control mode for vibration isolation. Hsieh, Huang [105] proposed the concept where a switched-mode rectifier (SMR) was used to provide positive or negative damping by implementing a skyhook control strategy, as shown in Figure 32. The results showed that the SMR can provide electrical damping based on the skyhook response outcome to achieve the balance between the passive control and the active control. His later research also indicated that the SMR can improve the harvesting efficiency for up to 14% [106].

#### 7.3. Balance between the Energy Harvesting and Vehicle Dynamic Performance

## 8. Road Excitation Input

#### 8.1. Sinusoidal Displacement Excitation Input

#### 8.2. Step Input

#### 8.3. Road Displacement Profile

#### 8.4. Road Test

## 9. Nonlinearity

- Widening the frequency bandwidth for harvesting more energy on the random road surface.
- Shifting the harvesting frequency away from the vehicle equivalent resonant frequency for better reliability.
- Converting the low road excitation frequency into high energy harvesting frequency.
- Better ride comfort and road handling.

## 10. Future Direction for Regenerative Shock Absorbers

## 11. Our Contributions

^{®}and Simulink

^{®}. The prototyped regenerative shock absorbers have been built and tested. The simulation model was established and validated via experiments. The validated simulation model was then used for the analysis of the system parameter sensitivity. The sensitivity analysis then led to the design optimization which allowed to maximize the vibrational energy harvesting [141].

## 12. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## Nomenclature

B | magnetic field intensity |

L | total coil length of the electromagnetic generator |

Bl | the product of B and l or electromechanical coupling |

U | voltage harvested over the external resistance |

V | coil speed with respect to the magnets |

C_{eq} | equivalent damping coefficient |

K_{i} | motor constant or electromechanical coupling |

R | external resistance |

N | special frequency |

Ω | angular spatial frequency |

${G}_{d}(n)$ | the vertical displacement with respect to the spatial frequency n |

${G}_{d}(\Omega )$ | the vertical displacement with respect to the angular spatial frequency Ω |

${G}_{d}({n}_{0})$ | the vertical displacement when n_{0} = 0.1 cycle/m |

${G}_{d}({\Omega}_{0})$ | the vertical displacement when Ω_{0} = 1 rad/m |

P_{ob} | Power spectral density of bounce |

P_{op} | Power spectral density of pitch |

f_{s} | spatial frequency |

l_{f} | distance between centre of gravity of the vehicle and the front bumper |

l_{r} | distance between centre of gravity of the vehicle and the rear bumper |

## References

- Lafarge, B.; Cagin, S.; Curea, O.; Perret, A.H. From functional analysis to energy harvesting system design: Application to car suspension. Int. J. Interact. Des. Manuf.
**2016**, 10, 37–50. [Google Scholar] [CrossRef] - Zuo, L.; Scully, B.; Shestani, J.; Zhou, Y. Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct.
**2010**, 19, 045003. [Google Scholar] [CrossRef] - Fayyad, S.M. Constructing control system for active suspension system. Contemp. Eng. Sci.
**2012**, 5, 189–200. [Google Scholar] - Gao, H.; Lam, J.; Wang, C. Multi-objective control of vehicle active suspension systems via load-dependent controllers. J. Sound Vib.
**2006**, 290, 654–675. [Google Scholar] [CrossRef] - Popovic, V.; Jankovic, D.; Vasic, B. Design and Simulation of Active Suspension System by Using Matlab. In Proceedings of the FISITA World Automotive Congress, Seoul, Korea, 12–15 June 2000. [Google Scholar]
- Rao, K.D. Modeling, simulation and control of semi active suspension system for automobiles under matlab simulink using pid controller. IFAC Proc. Vol.
**2014**, 47, 827–831. [Google Scholar] [CrossRef] - Mouleeswaran, S. Design and Development of Pid Controller-Based Active Suspension System for Automobiles; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Ahmed, A.E.-N.S.; Ali, A.S.; Ghazaly, N.M.; El-Jaber, G.A. Pid controller of active suspension system for a quarter car model. Int. J. Adv. Eng. Technol.
**2015**, 8, 899. [Google Scholar] - Gaur, S. Vibration control of bus suspension system using pi and pid controller. Int. J. Adv. Eng. Sci.
**2013**, 3, 94–99. [Google Scholar] - Elliott, S.J.; Zilletti, M. Scaling of electromagnetic transducers for shunt damping and energy harvesting. J. Sound Vib.
**2014**, 333, 2185–2195. [Google Scholar] [CrossRef] - Xiao, H.; Wang, X.; John, S. A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester. Mech. Syst. Signal Process.
**2015**, 58, 355–375. [Google Scholar] [CrossRef] - Lee, H.; Jang, H.; Park, J.; Jeong, S.; Park, T.; Choi, S. Design of a piezoelectric energy-harvesting shock absorber system for a vehicle. Integr. Ferroelectr.
**2013**, 141, 32–44. [Google Scholar] [CrossRef] - Xie, X.; Wang, Q. Energy harvesting from a vehicle suspension system. Energy
**2015**, 86, 385–392. [Google Scholar] [CrossRef] - Priya, S. Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceramics
**2007**, 19, 167–184. [Google Scholar] [CrossRef] - Lien, I.; Shu, Y. Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater. Struct.
**2012**, 21, 082001. [Google Scholar] [CrossRef] - Xu, Z.; Shan, X.; Chen, D.; Xie, T. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Appl. Sci.
**2016**, 6, 10. [Google Scholar] [CrossRef] - Poulin, G.; Sarraute, E.; Costa, F. Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system. Sens. Actuators A Phys.
**2004**, 116, 461–471. [Google Scholar] [CrossRef] - Mitcheson, P.; Reilly, E.; Toh, T.; Wright, P.; Yeatman, E. Transduction mechanisms and power density for mems inertial energy scavengers. Power MEMS
**2006**, 6, 275–278. [Google Scholar] - Choi, J.-S.; Yoo, J. Design of a halbach magnet array based on optimization techniques. IEEE Trans. Magn.
**2008**, 44, 2361–2366. [Google Scholar] [CrossRef] - Jang, S.-M.; Jeong, S.-S.; Ryu, D.-W.; Choi, S.-K. Comparison of three types of pm brushless machines for an electro-mechanical battery. IEEE Trans. Magn.
**2000**, 36, 3540–3543. [Google Scholar] [CrossRef] - Cheng, S.; Arnold, D.P. A study of a multi-pole magnetic generator for low-frequency vibrational energy harvesting. J. Micromech. Microeng.
**2009**, 20, 025015. [Google Scholar] [CrossRef] - Kulkarni, S.; Koukharenko, E.; Torah, R.; Tudor, J.; Beeby, S.; O’Donnell, T.; Roy, S. Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens. Actuators A Phys.
**2008**, 145, 336–342. [Google Scholar] [CrossRef] - Harne, R.L. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators. J. Acoust. Soc. Am.
**2012**, 132, 162–172. [Google Scholar] [CrossRef] [PubMed] - Chen, C.; Liao, W.-H. A self-sensing magnetorheological damper with power generation. Smart Mater. Struct.
**2012**, 21, 025014. [Google Scholar] [CrossRef] - Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, M.F. Design and modeling of a magnetic shock absorber based on eddy current damping effect. J. Sound Vib.
**2008**, 315, 875–889. [Google Scholar] [CrossRef] - Aldraihem, O.; Baz, A. Energy harvester with a dynamic magnifier. J. Intell. Mater. Syst. Struct.
**2011**, 22, 521–530. [Google Scholar] [CrossRef] - Lin, X.; Xuexun, G. Hydraulic transmission electromagnetic energy-regenerative active suspension and its working principle. In Proceedings of the 2010 2nd International Workshop on Intelligent Systems and Applications, Wuhan, China, 22–23 May 2010. [Google Scholar]
- Noritsugu, T. Energy saving of a pneumatic system (2). Energy regenerative control of a pneumatic drive system. Application to active air suspension. Hydraul. Pneum.
**1999**, 38, 1–4. [Google Scholar] - Gupta, A.; Jendrzejczyk, J.; Mulcahy, T.; Hull, J. Design of electromagnetic shock absorbers. Int. J. Mech. Mater. Des.
**2006**, 3, 285–291. [Google Scholar] [CrossRef] - Ebrahimi, B.; Bolandhemmat, H.; Khamesee, M.B.; Golnaraghi, F. A hybrid electromagnetic shock absorber for active vehicle suspension systems. Veh. Syst. Dyn.
**2011**, 49, 311–332. [Google Scholar] [CrossRef] - Tang, X.; Lin, T.; Zuo, L. Design and optimization of a tubular linear electromagnetic vibration energy harvester. IEEE/ASME Trans. Mechatron.
**2014**, 19, 615–622. [Google Scholar] [CrossRef] - Cheung, J.T. Frictionless Linear Electrical Generator for Harvesting Motion Energy; DTIC Document: Fort Belvoir, VA, USA, 2004. [Google Scholar]
- Zhang, P.S. Design of Electromagnetic Shock Absorbers for Energy Harvesting from Vehicle Suspensions. Master’s Thesis, Stony Brook University, Stony Brook, NY, USA, 2010. [Google Scholar]
- Jang, S.-M.; Choi, J.-Y.; Lee, S.-H.; Cho, H.-W.; Jang, W.-B. Analysis and experimental verification of moving-magnet linear actuator with cylindrical halbach array. IEEE Trans. Magn.
**2004**, 40, 2068–2070. [Google Scholar] [CrossRef] - Zhu, D.; Beeby, S.; Tudor, J.; Harris, N. Vibration energy harvesting using the halbach array. Smart Mater. Struct.
**2012**, 21, 075020. [Google Scholar] [CrossRef] - Long, Z.; He, G.; Xue, S. Study of eds & ems hybrid suspension system with permanent-magnet halbach array. IEEE Trans. Magn.
**2011**, 47, 4717–4724. [Google Scholar] - Yan, L.; Zhang, L.; Wang, T.; Jiao, Z.; Chen, C.-Y.; Chen, I. Magnetic field of tubular linear machines with dual halbach array. Prog. Electromagn. Res.
**2013**, 136, 283–299. [Google Scholar] [CrossRef] - Salauddin, M.; Park, J.Y. Design and experiment of human hand motion driven electromagnetic energy harvester using dual halbach magnet array. Smart Mater. Struct.
**2017**, 26, 035011. [Google Scholar] [CrossRef] - Zhu, D.; Beeby, S.; Tudor, M.; Harris, N. Electromagnetic vibration energy harvesting using an improved halbach array. In Proceedings of the PowerMEMS 2012, Atlanta, GA, USA, 2–5 December 2012. [Google Scholar]
- Zhu, D.; Beeby, S.; Tudor, J.; Harris, N. Increasing output power of electromagnetic vibration energy harvesters using improved halbach arrays. Sens. Actuators A Phys.
**2013**, 203, 11–19. [Google Scholar] [CrossRef] - Elvin, N.G.; Elvin, A.A. An experimentally validated electromagnetic energy harvester. J. Sound Vib.
**2011**, 330, 2314–2324. [Google Scholar] [CrossRef] - Goldner, R.; Zerigian, P.; Hull, J. A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers; SAE Technical Paper 0148-7191; SAE: Warrendale, PA, USA, 2001. [Google Scholar]
- Sapiński, B.; Rosół, M.; Węgrzynowski, M. Evaluation of an energy harvesting mr damper-based vibration reduction systemstem. J. Theor. Appl. Mech.
**2016**, 54, 333–344. [Google Scholar] [CrossRef] - Wang, R.; Ding, R.; Chen, L. Application of hybrid electromagnetic suspension in vibration energy regeneration and active control. J. Vib. Control
**2016**, 24, 223–233. [Google Scholar] [CrossRef] - Asadi, E.; Ribeiro, R.; Khamesee, M.B.; Khajepour, A. Analysis, prototyping and experimental characterization of an adaptive hybrid-electromagnetic damper for automotive suspension systems. IEEE Trans. Veh. Technol.
**2016**, 66, 3703–3713. [Google Scholar] [CrossRef] - Sapiński, B.; Rosół, M.; Węgrzynowski, M. Investigation of an energy harvesting mr damper in a vibration control system. Smart Mater. Struct.
**2016**, 25, 125017. [Google Scholar] [CrossRef] - Li, Z.; Zuo, L.; Kuang, J.; Luhrs, G. A motion rectifier based energy harvesting shock absorbers. In Proceedings of the 2012 ASME Design Engineering Conference, Chicago, IL, USA, 12–15 August 2012. [Google Scholar]
- Li, P.; Zuo, L. Assessment of vehicle performances with energy-harvesting shock absorbers. SAE Int. J. Passeng. Cars-Mech. Syst.
**2013**, 6, 18–27. [Google Scholar] [CrossRef] - Zhang, Z.; Zhang, X.; Chen, W.; Rasim, Y.; Salman, W.; Pan, H.; Yuan, Y.; Wang, C. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energy
**2016**, 178, 177–188. [Google Scholar] [CrossRef] - Guo, S.; Liu, Y.; Xu, L.; Guo, X.; Zuo, L. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles. Veh. Syst. Dyn.
**2016**, 54, 918–942. [Google Scholar] [CrossRef] - Xie, L.; Li, J.; Cai, M. Design of a hybrid energy-harvesting shock absorber. In Proceedings of the International Forum on Energy, Environment Science and Materials (IFEESM 2015), Shenzhen, China, 25–26 September 2015. [Google Scholar]
- Fukumori, Y.; Hayashi, R.; Matsumi, R.; Suda, Y.; Nakano, K. Study on Independent Tuning Damping Characteristic by Coupling of Electromagnetic Dampers for Automobiles; SAE Technical Paper 0148-7191; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Zheng, X.-c.; Yu, F.; Zhang, Y.-C. A novel energy-regenerative active suspension for vehicles. J. Shanghai Jiaotong Univ. Sci.
**2008**, 13, 184–188. [Google Scholar] [CrossRef] - Kawamoto, Y.; Suda, Y.; Inoue, H.; Kondo, T. Modeling of electromagnetic damper for automobile suspension. J. Syst. Des. Dyn.
**2007**, 1, 524–535. [Google Scholar] [CrossRef] - Kawamoto, Y.; Suda, Y.; Inoue, H.; Kondo, T. Electro-mechanical suspension system considering energy consumption and vehicle manoeuvre. Veh. Syst. Dyn.
**2008**, 46, 1053–1063. [Google Scholar] [CrossRef] - Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, M.F. Feasibility study of an electromagnetic shock absorber with position sensing capability. In Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, IECON 2008, Orlando, FL, USA, 10–13 November 2008; pp. 2988–2991. [Google Scholar]
- Zhang, Y.; Huang, K.; Yu, F.; Gu, Y.; Li, D. Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system. In Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, ICVES 2007, Beijing, China, 13–15 December 2007; pp. 1–5. [Google Scholar]
- Cheng, S.; Wang, N.; Arnold, D.P. Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J. Micromech. Microeng.
**2007**, 17, 2328. [Google Scholar] [CrossRef] - Liu, Y.; Xu, L.; Zuo, L. Design, modeling, lab and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE/ASME Trans. Mechatron.
**2017**, 22, 1933–1943. [Google Scholar] [CrossRef] - Cargo, C.J.; Plummer, A.R.; Hillis, A.J.; Schlotter, M. Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves. Proc. Inst. Mech. Eng. Part A J. Power Energy
**2011**, 226, 98–111. [Google Scholar] [CrossRef] - Lin, X.; Bo, Y.; Xuexun, G.; Jun, Y. Simulation and performance evaluation of hydraulic transmission electromagnetic energy-regenerative active suspension. In Proceedings of the 2010 Second WRI Global Congress on Intelligent Systems, Wuhan, China, 16–17 December 2010; pp. 58–61. [Google Scholar]
- Avadhany, S.; Abel, P.; Tarasov, V.; Anderson, Z. Regenerative Shock Absorber. U.S. Patent No. 8,376,100, 19 February 2013. [Google Scholar]
- Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the pelamis wave energy converter. Renew. Energy
**2006**, 31, 271–283. [Google Scholar] [CrossRef] - Antaki, J.F.; Bertocci, G.E.; Green, E.C.; Nadeem, A.; Rintoul, T.; Kormos, R.L.; Griffith, B.P. A gait-powered autologous battery charging system for artificial organs. ASAIO J.
**1995**, 41, M588–M595. [Google Scholar] [CrossRef] [PubMed] - Chandler, D. More Power from Bumps in the Road-Mit Students Develop Energy-Harvesting Shock Absorbers; MIT News: Cambridge, MA, USA, 2009. [Google Scholar]
- Liang, X.-C.; Zhao, J.-S. Research on recycling vibration energy of shock absorber. Int. J. Veh. Des.
**2015**, 68, 201–220. [Google Scholar] [CrossRef] - Fang, Z.; Guo, X.; Xu, L.; Zhang, H. Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber. Adv. Mech. Eng.
**2013**, 5, 943528. [Google Scholar] [CrossRef] - Wang, R.; Gu, F.; Cattley, R.; Ball, A.D. Modelling, testing and analysis of a regenerative hydraulic shock absorber system. Energies
**2016**, 9, 386. [Google Scholar] [CrossRef] - Galluzzi, R.; Tonoli, A.; Amati, N.; Curcuruto, G.; Conti, P.; Greco, G.; Nepote, A. Regenerative Shock Absorbers and the Role of the Motion Rectifier; SAE Technical Paper 0148-7191; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Van der Westhuizen, S.F.; Els, P.S. Comparison of different gas models to calculate the spring force of a hydropneumatic suspension. J. Terramech.
**2015**, 57, 41–59. [Google Scholar] [CrossRef] - Tao, S.; Fan, Y.; You, Z. Investigation on non-linear characteristics of hydropneumatic suspension modeling and simulation for engineering vehicles. Acta Simulata Syst. Sin.
**2005**, 1, 55. [Google Scholar] - Longxin, Z.; Xiaogang, W. Structure and performance analysis of regenerative electromagnetic shock absorber. J. Netw.
**2010**, 5, 1467–1474. [Google Scholar] - Crolla, D. Off-road vehicle dynamics. Veh. Syst. Dyn.
**1981**, 10, 253–266. [Google Scholar] [CrossRef] - Shaiju, M.; Mitra, M. Energy generating suspension system for commercial vehicles. SAE Int. J. Commer. Veh.
**2008**, 1, 248–253. [Google Scholar] [CrossRef] - Jin-qiu, Z.; Zhi-zhao, P.; Lei, Z.; Yu, Z. A review on energy-regenerative suspension systems for vehicles. In Proceedings of the World Congress on Engineering, London, UK, 3–5 July 2013; pp. 3–5. [Google Scholar]
- Nakano, K. Combined type self-powered active vibration control of truck cabins. Veh. Syst. Dyn.
**2004**, 41, 449–473. [Google Scholar] [CrossRef] - Choi, S.; Seong, M.; Kim, K. Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
**2009**, 223, 459–469. [Google Scholar] [CrossRef] - Chu, K.S.; Zou, L.; Liao, W.-H. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter. In Proceedings of the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, Las Vegas, NV, USA, 20–24 March 2016. [Google Scholar]
- Sabzehgar, R.; Maravandi, A.; Moallem, M. Energy regenerative suspension using an algebraic screw linkage mechanism. IEEE/ASME Trans. Mechatron.
**2014**, 19, 1251–1259. [Google Scholar] [CrossRef] - Zhang, Y.; Zhang, X.; Zhan, M.; Guo, K.; Zhao, F.; Liu, Z. Study on a novel hydraulic pumping regenerative suspension for vehicles. J. Frankl. Inst.
**2015**, 352, 485–499. [Google Scholar] [CrossRef] - Singh, S.; Satpute, N.V. Design and analysis of energy-harvesting shock absorber with electromagnetic and fluid damping. J. Mech. Sci. Technol.
**2015**, 29, 1591. [Google Scholar] [CrossRef] - Satpute, N.V.; Satpute, S.N.; Jugulkar, L.M. Hybrid electromagnetic shock absorber for energy harvesting in a vehicle suspension. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2016**, 231, 1500–1517. [Google Scholar] [CrossRef] - Demetgul, M.; Guney, I. Design of the hybrid regenerative shock absorber and energy harvesting from linear movement. J. Clean Energy Technol.
**2017**, 5, 81–84. [Google Scholar] [CrossRef] - Liu, Y.; Zuo, L. Mixed skyhook and power-driven-damper: A new low-jerk semi-active suspension control based on power flow analysis. J. Dyn. Syst. Meas. Control
**2016**, 138, 081009. [Google Scholar] [CrossRef] - Cole, D.; Cebon, D. Truck suspension design to minimize road damage. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
**1996**, 210, 95–107. [Google Scholar] [CrossRef] - Yan, S.; Sun, W. Energy regeneration scheme and self-powered criterion of motor-driven active suspension. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 8926–8931. [Google Scholar]
- Shi, D.; Pisu, P.; Chen, L.; Wang, S.; Wang, R. Control design and fuel economy investigation of power split hev with energy regeneration of suspension. Appl. Energy
**2016**, 182, 576–589. [Google Scholar] [CrossRef] - Ottman, G.K.; Hofmann, H.F.; Bhatt, A.C.; Lesieutre, G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron.
**2002**, 17, 669–676. [Google Scholar] [CrossRef] - Ding, R.; Wang, R.; Meng, X.; Chen, L. Study on coordinated control of the energy regeneration and the vibration isolation in a hybrid electromagnetic suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
**2016**, 231, 1530–1539. [Google Scholar] [CrossRef] - Arroyo, E.; Badel, A.; Formosa, F. Synchronized switch harvesting technique applied to electromagnetic vibrations harvester. In Proceedings of the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2010), Leuven, Belgium, 30 November–3 December 2010; pp. 45–48. [Google Scholar]
- Sanchez, D.; Jodka, E.; Hoffmann, D.; Manoli, Y. Interface circuit using smfe technique for an inductive kinetic generator operating as a frequency-up converter. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2013; p. 012051. [Google Scholar]
- Arroyo, E.; Badel, A.; Formosa, F. Energy harvesting from ambient vibrations: Electromagnetic device and synchronous extraction circuit. J. Intell. Mater. Syst. Struct.
**2013**, 24, 2023–2035. [Google Scholar] [CrossRef] - Dwari, S.; Parsa, L. An efficient ac–dc step-up converter for low-voltage energy harvesting. IEEE Trans. Power Electron.
**2010**, 25, 2188–2199. [Google Scholar] [CrossRef] - Liu, Y.; Chen, W.; Zhang, Z.; Hua, G. Energy-regenerative shock absorber for transportation vehicles based on dual overrunning clutches: Design, modeling, and simulation. Transp. Res. Rec. J. Transp. Res. Board
**2016**, 2551, 126–136. [Google Scholar] [CrossRef] - Han, S.; Divan, D. Bi-directional dc/dc converters for plug-in hybrid electric vehicle (PHEV) applications. In Proceedings of the wenty-Third Annual IEEE, Applied Power Electronics Conference and Exposition, APEC 2008, Austin, TX, USA, 24–28 February 2008; pp. 784–789. [Google Scholar]
- Cao, X.; Chiang, W.-J.; King, Y.-C.; Lee, Y.-K. Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans. Power Electron.
**2007**, 22, 679–685. [Google Scholar] [CrossRef] - Kazimierczuk, M.K.; Massarini, A. Feedforward control of dc-dc pwm boost converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
**1997**, 44, 143–148. [Google Scholar] [CrossRef] - Liu, J.; Li, X.; Wang, Z.; Zhang, Y. Modelling and experimental study on active energy-regenerative suspension structure with variable universe fuzzy pd control. Shock Vib.
**2016**, 2016, 6170275. [Google Scholar] [CrossRef] - Tiwari, A.; Siddique, M.K.; Naseem, M. Controlling the vibration of bus suspension system using PID controller. Int. J. Emerg. Technol. Adv. Eng.
**2015**, 5, 519–523. [Google Scholar] - Gururaj, M.S.; Selvakumar, A. Fuzzy logic control for half car suspension system using Matlab. Int. J. Eng. Res. Technol.
**2014**, 3, 10–16. [Google Scholar] - Kuber, C. Modelling simulation and control of an active suspension system. Int. J. Mech. Eng. Technol. IJMET
**2014**, 5, 66–75. [Google Scholar] - Zhou, Q. Research and Simulation on New Active Suspension Control System; Lehigh University: Bethlehem, PA, USA, 2013. [Google Scholar]
- Fukumori, Y.; Hayashi, R.; Okano, H.; Suda, Y.; Nakano, K. Study on coupled shock absorber system using four electromagnetic dampers. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2016; p. 012217. [Google Scholar]
- Zhang, H.; Li, G.; Wang, Y.; Gu, Y.; Wang, X.; Guo, X. Simulation Analysis on Controllability of Hydraulic Electrical Energy Regenerative Semi-Active Suspension; SAE Technical Paper 0148-7191; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Hsieh, C.-Y.; Huang, B.; Golnaraghi, F.; Moallem, M. Regenerative skyhook control for an electromechanical suspension system using a switch-mode rectifier. IEEE Trans. Veh. Technol.
**2016**, 65, 9642–9650. [Google Scholar] [CrossRef] - Hsieh, C.-Y.; Moallem, M.; Golnaraghi, F. A bidirectional boost converter with application to a regenerative suspension system. IEEE Trans. Veh. Technol.
**2016**, 65, 4301–4311. [Google Scholar] [CrossRef] - Ataei, M.; Asadi, E.; Goodarzi, A.; Khajepour, A.; Khamesee, M.B. Multi-objective optimization of a hybrid electromagnetic suspension system for ride comfort, road holding and regenerated power. J. Vib. Control
**2017**, 23, 782–793. [Google Scholar] [CrossRef] - Clemen, L.; Anubi, O.M.; Margolis, D. On the regenerative capabilities of electrodynamic dampers using bond graphs and model predictive control. J. Dyn. Syst. Meas. Control
**2016**, 138, 051006. [Google Scholar] [CrossRef] - Casavola, A.; Di Iorio, F.; Tedesco, F. A multiobjective h∞ control strategy for energy harvesting in regenerative vehicle suspension systems. Int. J. Control
**2017**, 91, 741–754. [Google Scholar] [CrossRef] - Zuo, L.; Tang, X. Large-scale vibration energy harvesting. J. Intell. Mater. Syst. Struct.
**2013**, 24, 1405–1430. [Google Scholar] [CrossRef] - Nakano, K.; Suda, Y.; Nakadai, S. Self-powered active vibration control using a single electric actuator. J. Sound Vib.
**2003**, 260, 213–235. [Google Scholar] [CrossRef] - Scruggs, J.; Iwan, W. Control of a civil structure using an electric machine with semiactive capability. J. Struct. Eng.
**2003**, 129, 951–959. [Google Scholar] [CrossRef] - Scruggs, J. Active, Regenerative Control of Civil Structures; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1999. [Google Scholar]
- Scruggs, J.T.; Iwan, W. Structural control with regenerative force actuation networks. Struct. Control Health Monit.
**2005**, 12, 25–45. [Google Scholar] [CrossRef] - Okada, Y. Variable resistance type energy regenerative damper using pulse width modulated step-up chopper. J. Vib. Acoust.
**2002**, 14, 110–115. [Google Scholar] - Tang, X.; Zuo, L. Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. In Proceedings of the American Control Conference (ACC), San Francisco, CA, USA, 29 June–1 July 2011; pp. 3134–3139. [Google Scholar]
- Wang, Z.; Chen, Z.; Spencer, B.F., Jr. Self-powered and sensing control system based on mr damper: Presentation and application. In Proceedings of the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 8–12 March 2009. [Google Scholar]
- Choi, Y.-T.; Wereley, N.M. Self-powered magnetorheological dampers. J. Vib. Acoust.
**2009**, 131, 044501. [Google Scholar] [CrossRef] - Yu, L.; Huo, S.; Xuan, W.; Zuo, L. Assessment of ride comfort and braking performance using energy-harvesting shock absorber. SAE Int. J. Passeng. Cars-Mech. Syst.
**2015**, 8, 482–491. [Google Scholar] [CrossRef] - Huang, B.; Hsieh, C.-Y.; Golnaraghi, F.; Moallem, M. Development and optimization of an energy-regenerative suspension system under stochastic road excitation. J. Sound Vib.
**2015**, 357, 16–34. [Google Scholar] [CrossRef] - Wang, X.; Liang, X.; Wei, H. A study of electromagnetic vibration energy harvesters with different interface circuits. Mech. Syst. Signal Process.
**2015**, 58, 376–398. [Google Scholar] [CrossRef] - Li, P.; Zuo, L. Influences of the electromagnetic regenerative dampers on the vehicle suspension performance. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
**2017**, 231, 383–394. [Google Scholar] [CrossRef] - Perret, A.H.; Curea, O.; Cagin, S.; Ortega, A.G. From functional analysis to energy harvesting system design: Application to car suspension. In Proceedings of the Virtual Concept Workshop 2014, Medellin, CO, USA, 26–28 March 2014. [Google Scholar]
- ISO. Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data; International Organization for Standardization (ISO): Geneva, Switzerland, 1995. [Google Scholar]
- Agostinacchio, M.; Ciampa, D.; Olita, S. The vibrations induced by surface irregularities in road pavements—A Matlab® approach. Eur. Transp. Res. Rev.
**2014**, 6, 267–275. [Google Scholar] [CrossRef] - Zhang, Y.; Guo, K.; Wang, D.; Chen, C.; Li, X. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy
**2016**, 119, 961–970. [Google Scholar] [CrossRef] - Li, Z.; Zuo, L.; Kuang, J.; Luhrs, G. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater. Struct.
**2012**, 22, 025008. [Google Scholar] [CrossRef] - Zhang, R.; Wang, X.; Liu, Z. A novel regenerative shock absorber with a speed doubling mechanism and its monte carlo simulation. J. Sound Vib.
**2018**, 417, 260–276. [Google Scholar] [CrossRef] - Barton, D.A.; Burrow, S.G.; Clare, L.R. Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust.
**2010**, 132, 021009. [Google Scholar] [CrossRef] - Nguyen, D.; Halvorsen, E.; Jensen, G.; Vogl, A. Fabrication and characterization of a wideband mems energy harvester utilizing nonlinear springs. J. Micromech. Microeng.
**2010**, 20, 125009. [Google Scholar] [CrossRef] - Soliman, M.; Abdel-Rahman, E.; El-Saadany, E.; Mansour, R. A wideband vibration-based energy harvester. J. Micromech. Microeng.
**2008**, 18, 115021. [Google Scholar] [CrossRef] - Yang, W.; Towfighian, S. A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process.
**2017**, 90, 317–333. [Google Scholar] [CrossRef] - Erturk, A.; Hoffmann, J.; Inman, D. A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett.
**2009**, 94, 254102. [Google Scholar] [CrossRef] - Ferrari, M.; Ferrari, V.; Guizzetti, M.; Andò, B.; Baglio, S.; Trigona, C. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A Phys.
**2010**, 162, 425–431. [Google Scholar] [CrossRef] - Stanton, S.C.; McGehee, C.C.; Mann, B.P. Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett.
**2009**, 95, 174103. [Google Scholar] [CrossRef] - Mann, B.; Sims, N. Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib.
**2009**, 319, 515–530. [Google Scholar] [CrossRef] - Gao, M.; Wang, Y.; Wang, Y.; Wang, P. Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Appl. Energy
**2018**, 220, 856–875. [Google Scholar] [CrossRef] - Özcan, D.; Sönmez, Ü.; Güvenç, L. Optimisation of the nonlinear suspension characteristics of a light commercial vehicle. Int. J. Veh. Technol.
**2013**, 2013, 562424. [Google Scholar] [CrossRef] - Cui, Y.; Kurfess, T.R.; Messman, M. Testing and modeling of nonlinear properties of shock absorbers for vehicle dynamics studies. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2010; pp. 20–22. [Google Scholar]
- Wang, X. Frequency Analysis of Vibration Energy Harvesting Systems; Academic Press: London, UK, 2016. [Google Scholar]
- Bawahab, M.; Xiao, H.; Wang, X. A Study of Linear Regenerative Electromagnetic Shock Absorber System; SAE Technical Paper; SAE International: London, UK, 2015. [Google Scholar]
- Wang, X.; Liang, X.; Hao, Z.; Du, H.; Zhang, N.; Qian, M. Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits. Mech. Syst. Signal Process.
**2016**, 72, 906–924. [Google Scholar] [CrossRef] - Wang, X.; John, S.; Watkins, S.; Yu, X.; Xiao, H.; Liang, X.; Wei, H. Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters. Mech. Syst. Signal Process.
**2015**, 52, 672–684. [Google Scholar] [CrossRef] - Wang, X.; Liang, X.; Shu, G.; Watkins, S. Coupling analysis of linear vibration energy harvesting systems. Mech. Syst. Signal Process.
**2016**, 70, 428–444. [Google Scholar] [CrossRef] - Wang, X. Coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis. J. Sound Vib.
**2016**, 362, 125–141. [Google Scholar] [CrossRef]

**Figure 2.**Quarter vehicle suspension system integrated with a piezoelectric generator [11]. PZT：piezoelectric.

**Figure 3.**Hybrid energy harvester system combining piezoelectric and electromagnetic transducers [16].

**Figure 4.**Design of the electromagnetic damper with two layers of magnets [30].

**Figure 5.**Captured energy versus the dimension of a spacer between two magnets [32].

**Figure 6.**Halbach array magnet stack [34].

**Figure 7.**Magnetic flux plots of (

**a**) longitudinal pattern with spacer; (

**b**) transverse pattern with spacer; (

**c**) transverse pattern; (

**d**) Halbach array [33].

**Figure 8.**Transverse magnetic array with (

**a**) two magnets; (

**b**) three magnets; (

**c**) five magnets and (

**d**) seven magnets for comparison with the Halbach array [35].

**Figure 9.**Four-phase coil design [31].

**Figure 10.**Normalized power vs. number of coil phases [31].

**Figure 11.**(

**a**) The prototype of the regenerative shock absorber and (

**b**) the integrated Mechanical motion rectifier, as proposed by Li, Zuo [47].

**Figure 12.**Dual overrunning clutch transmission system [49].

**Figure 13.**Ball screw indirect drive regenerative shock absorber system [58].

**Figure 14.**The design of a mechanical motion rectifier based the energy-harvesting shock absorber using a ball-screw mechanism [59].

**Figure 15.**The hydraulic shock absorber prototype [67].

**Figure 16.**Working principle of the hydraulic regenerative shock absorber system without a mechanical motion rectifier [69].

**Figure 17.**(

**a**) Direct drive regenerative shock absorber system; (

**b**) Indirect drive regenerative shock absorber system.

**Figure 18.**Direct drive linear regenerative shock absorber (Mark 1) and indirect drive ball screw regenerative shock absorber (Mark 2) installed on the same all-terrain vehicle (ATV) [29].

**Figure 19.**Hybrid dual cylinder regenerative suspension system and its prototype [82].

**Figure 20.**The conceptual design of a hybrid regenerative shock absorber [51].

**Figure 21.**The cross-section of the hybrid regenerative shock absorber and its experimental setup [83].

**Figure 23.**The cross section of the Magneto-rheological regenerative damper and its damping force against the displacement for applied currents.

**Figure 24.**Continuous damping provided by the dual clutches system [49].

**Figure 26.**Damping force displacement loops of the regenerative shock absorber [67].

**Figure 29.**Direct alternating current to direct current (AC-DC) step-up converter [93].

**Figure 30.**Electrical circuit of a hydraulic indirect drive regenerative shock absorber [80].

**Figure 31.**Independent tuneable electromagnetic damper system [103].

**Figure 32.**Regenerative suspension dynamic model and configuration of switched-mode rectifier (SMR).

**Figure 34.**Control electric circuits of the proposed regenerative shock absorber system with relay switches [76].

**Figure 35.**Power spectral density (PSD) of input displacement excitation profile of the C level road on which the vehicle is travelling at 80 km/h.

**Figure 36.**The output power versus road class and vehicle velocity [51].

**Figure 37.**Road test of the ball-screw-based mechanical motion rectifier (MMR) shock absorber and its electrical outputs.

**Figure 39.**Road test set up of an active energy-regenerative suspension (AERS) and its body acceleration in the frequency domain at 20 km/h on Class B road.

**Figure 40.**Frequency spectrum of the power generation in a quarter vehicle regenerative suspension system.

**Figure 41.**Nonlinear magnetic levitation energy harvesting system and its frequency spectrum of oscillator velocity.

**Figure 42.**Illustration of a multi-stable magnetic levitation energy harvester applied on rail and bogie.

**Figure 43.**Experimental setup of the Mazda CX-7 nonlinear shock absorber and its force velocity curve.

**Table 1.**Comparison between the piezoelectric system and electromagnetic system [17].

Comparison Elements between the Two Systems | Electromagnetic System | Piezoelectric System |
---|---|---|

Strain | Low | High |

Displacement | High | Low |

Voltage | Variable | High |

Current | Variable | Low |

Resonant frequency | Variable | High |

Output impedance | Resistive | Capacitive |

Adapted load | Variable | High |

Presenter | Mechanism | Voltage Output (V) | Power Output (W) | Vehicle Speed (km/h) or Road Excitation Amplitude and Frequency (Hz) | Energy Harvesting Efficiency | System Resonant Frequency | Damping Ratio/Harvesting Bandwidth |
---|---|---|---|---|---|---|---|

Zuo, Scully [2] | Electromagnetic system | 10 V | 8 W | 4 Hz | N/A | 18.5 Hz for 0 phase coil set and 8 Hz for 90 phase coil set | 21 Hz |

Goldner, Zerigian [42] | Electromagnetic system | 1.3 V | N/A | 2 mm at 20 Hz | N/A | N/A | N/A |

Gupta, Jendrzejczyk [29] | Electromagnetic system with two layers of magnets | 2.52 V | 54 W | N/A | N/A | N/A | N/A |

Xie and Wang [13] | Piezoelectric material | N/A | 738 W | 126 Km/h on class D road | N/A | N/A | N/A |

Sapiński, Rosół [43] | Electromagnetic system | 10 V | N/A | 4.5 mm at 10 Hz | N/A | 4 Hz | 1 Hz |

Tang, Lin [31] | Electromagnetic system | N/A | 2.8 W | 5 mm at 10 Hz | N/A | N/A | N/A |

Wang, Ding [44] | Electromagnetic system | N/A | 24.78 W | N/A | 20.1% | 1.5 Hz and 12 Hz | 0.5 Hz |

Asadi, Ribeiro [45] | Electromagnetic system | N/A | N/A | 4.03 mm at 10 Hz | N/A | N/A | N/A |

Chen and Liao [24] | Combination of MR damper and electromagnetic system | 1.9 V | N/A | 3 mm at 1 Hz | N/A | N/A | N/A |

Sapiński, Rosół [46] | Combination of MR damper and electromagnetic system | 2 V | 0.4 W | 4.5 mm at 4 Hz | N/A | 4.5 Hz | 1 Hz |

Presenter | Mechanism | Voltage Output (V) | Power Output (W) | Vehicle (km/h) or Excitation Frequency (Hz) | Energy Harvesting Efficiency |
---|---|---|---|---|---|

Li and Zuo [48] | Rack and pinion | N/A | 60–8 4W | 108 km/h on class C road | N/A |

Gupta, Jendrzejczyk [29] | Rack and pinion | 1.1 V | 88.8 W | N/A | 21% |

Nakano [76] | Ball-screw | N/A | 55.39 W | N/A | 36% |

Fang, Guo [67] | Hydraulic system with 4 check valves for rectification | N/A | 6.2 W | 0.48 Hz | 16.6% |

Choi, Seong [77] | Rack and pinion | 15 V | 40 W | 20 mm at 3 Hz | N/A |

Zhang, Zhang [49] | Rack and pinion, two overrunning clutches | 3 V | 4.302 W | 7.5 mm at 2.5 Hz | 54.98% |

Zhang, Huang [57] | Ball screw | 15 V | 11.73 W | 5 mm at 15 Hz | N/A |

Chu, Zou [78] | Rod and helical slot | 3.31 V | 11.3 W | 0.94 mm at 11 Hz | 77% |

Wang, Gu [68] | Hydraulic system | 20 V | 260 W | 25 mm at 1 Hz | 40% |

Sabzehgar, Maravandi [79] | Algebraic screw | N/A | 0.54 W | 3.05 mm at 5.6 Hz | 56% |

Liu, Xu [59] | Ball screw with two one way clutches | N/A | 24.7 W | 2 mm at 4 Hz | 51.9% |

Kawamoto, Suda [55] | Ball screw | N/A | 44 W | 80 km/h on class C road | N/A |

Zhang, Zhang [80] | DC generator connected to the hydraulic actuator | N/A | 33.4 W | 50 mm at 1.67 Hz | N/A |

Shaiju and Mitra [74] | Pump powered by the compressed air | N/A | N/A | N/A | N/A |

Presenter | Mechanism | Voltage Output (V) | Power Output(W) | Vehicle (km/h) or Excitation Frequency (Hz) | Efficiency |
---|---|---|---|---|---|

Singh and Satpute [81] | Hydraulic piston with linear electromagnetic generator | N/A | 15 W | 35 km/h on class C road | 13% |

Xie, Li [51] | Secondary piston with rack and pinion to drive the rotary generator | N/A | 130 W (simulated) | 120 km/h on class C road | N/A |

Demetgul and Guney [83] | Combined linear electromagnetic generator and hydraulic rotary generator | 6 V | 0.003 W for electromagnetic generator, 0.56 W for hydraulic generator | 15 mm at 0.005 m/s | N/A |

Presenter | Mechanism | Damping Coefficient | Maximum Damping Force |
---|---|---|---|

Direct drive system | |||

Sapiński, Rosół [43] | Electromagnetic system | N/A | 520 N |

Tang, Lin [31] | Electromagnetic system | 940 Ns/m | N/A |

Wang, Ding [44] | Electromagnetic system | 1320 Nm/s | N/A |

Asadi, Ribeiro [45] | Electromagnetic system | 1302–1540 Ns/m | N/A |

Chen and Liao [24] | Combination of MR damper and electromagnetic system | N/A | 700 N |

Sapiński, Rosół [43] | Combination of MR damper and electromagnetic system | N/A | 520 N |

Indirect drive system | |||

Li and Zuo [48] | Rack and pinion | 1425 Ns/m | N/A |

Gupta, Jendrzejczyk [29] | Rack and pinion | 38.5 Ns/m | N/A |

Nakano [76] | Ball-screw | 7200 Ns/m | N/A |

Fang, Guo [67] | Hydraulic system with 4 check valves for rectification | N/A | 7343 N |

Choi, Seong [77] | Rack and pinion | N/A | 700 N |

Zhang, Zhang [49] | Rack and pinion, two overrunning clutches | 1637.2 Ns/m | N/A |

Chu, Zou [78] | Rod and helical slot | N/A | 600 N |

Wang, Gu [68] | Hydraulic system | N/A | 10,000 N |

Sabzehgar, Maravandi [79] | Algebraic screw | 237 Ns/m | N/A |

Liu, Xu [59] | Ball screw with two one way clutches | 15,420 Ns/m | N/A |

Zhang, Zhang [80] | DC generator connected to the hydraulic actuator | N/A | 1450 N |

Hybrid system | |||

Singh and Satpute [81] | Hydraulic piston with linear electromagnetic generator | 1898 Ns/m | N/A |

Presenter | Drive Mode | Electrical Circuit and Control Algorithm | Results |
---|---|---|---|

Fukumori, Hayashi [52] | Indirect drive | Independent damping control circuit | Reduced pitch angle |

Yu, Huo [119] | Indirect drive | PI controller | Reduced suspension acceleration, pitch angle, normal force and increased power output |

Nakano [76] | Indirect drive | Regeneration mode and drive mode | Active control and self-power |

Choi, Seong [77] | Indirect drive | Skyhook controller | Reduced suspension travel and settling time |

Zheng, Yu [53] | Indirect drive | Electrical motor mode and regenerative braking mode controlled by PWM | Optimum ride comfort |

Kawamoto, Suda [54] | Indirect drive | PI controller | Reduced sprung mass acceleration and tire deflection |

Wang, Ding [44] | Direct drive | active comfort mode, active safety mode and regeneration mode, PI controller | Reduced cabin acceleration and dynamic tire load in active mode |

Singh and Satpute [81] | Hybrid | Harvesting mode and shunt mode controlled by two switches and a resistance | Energy can be either harvested or dissipated as heat |

Huang, Hsieh [120] | Indirect drive | Switch-mode rectifier | Tuneable damping coefficient |

Zhang, Li [104] | Indirect drive | Skyhook controller | Reduced sprung mass acceleration, suspension deflection and tire dynamic |

Sapiński, Rosół [43] | Direct drive | On-off algorithm or skyhook controller | Less force and less transmissibility obtained with skyhook controller than with on-off algorithm |

Liu, Li [98] | Direct drive | Fuzzy control | Reduced amplitude of suspension dynamic flexibility, tire dynamic displacement |

Ding, Wang [89] | Direct drive | Passive generation mode, active control mode with skyhook controller | Better vibration isolation in the active control mode |

Sabzehgar, Maravandi [79] | Indirect drive | PWM control | Conversion of three phase power output for charging the battery |

Road Class | ${\mathit{G}}_{\mathit{d}}({\mathit{n}}_{0})$ (10^{−6} m^{3}) | ${\mathit{G}}_{\mathit{d}}({\Omega}_{0})$ (10^{−6} m^{3}) | ||
---|---|---|---|---|

Lower Limit | Upper Limit | Lower Limit | Upper Limit | |

A | --- | 32 | --- | 2 |

B | 32 | 128 | 2 | 8 |

C | 128 | 512 | 8 | 32 |

D | 512 | 2048 | 32 | 128 |

E | 2048 | 8192 | 128 | 512 |

F | 8192 | 32,768 | 512 | 2048 |

G | 32,768 | 131,072 | 2048 | 8192 |

H | 131,072 | --- | 8192 | --- |

n_{0} = 0.1 cycles/m | Ω_{0} = 1 rad/m |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, R.; Wang, X.; John, S. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems. *Energies* **2018**, *11*, 1167.
https://doi.org/10.3390/en11051167

**AMA Style**

Zhang R, Wang X, John S. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems. *Energies*. 2018; 11(5):1167.
https://doi.org/10.3390/en11051167

**Chicago/Turabian Style**

Zhang, Ran, Xu Wang, and Sabu John. 2018. "A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems" *Energies* 11, no. 5: 1167.
https://doi.org/10.3390/en11051167