CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves
Abstract
:1. Introduction
2. Numerical Model
2.1. Coupled Fluid-Motion Solver
2.1.1. Fluid Solver
2.1.2. Motion Solver
2.1.3. Coupling Algorithm
2.2. Computational Domain
2.3. Boundary Conditions
2.4. Solver Settings
3. Results
3.1. 2-WEC Array
3.1.1. Fixed 2-WEC Array
3.1.2. Heaving 2-WEC Array
3.2. 5-WEC Array
3.2.1. Fixed 5-WEC Array
3.2.2. Heaving 5-WEC Array
3.3. 9-WEC Array
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
3D | Three Dimensional |
BEM | Boundary Element Method |
AMI | Arbitrary Mesh Interface |
CFD | Computational Fluid Dynamics |
CPU | Central Processing Unit |
DHI | Danish Hydraulic Institute |
FPA | Floating Point Absorber |
FSI | Fluid-Structure Interaction |
FWO | Research Foundation – Flanders |
NWT | Numerical Wave Tank |
PTO | Power Take-Off |
RANS | Reynolds-Averaged Navier-Stokes |
TVD | Total Variation Diminishing |
VoF | Volume of Fluid |
WEC | Wave Energy Converter |
WG | Wave Gauge |
References
- Ransley, E.; Greaves, D.; Raby, A.; Simmonds, D.; Hann, M. Survivability of wave energy converters using CFD. Renew. Energy 2017, 109, 235–247. [Google Scholar] [CrossRef]
- Davidson, J.; Windt, C.; Giorgi, G.; Genest, R.; Ringwood, J.V. Evaluation of energy maximising control systems for wave energy converters using OpenFOAM for wave energy converters using OpenFOAM. In OpenFOAM—Selected papers from the 11th Workshop; Nobrega, M., Jasak, H., Eds.; Number February; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Wolgamot, H.A.; Fitzgerald, C.J. Nonlinear hydrodynamic and real fluid effects on wave energy converters. Proc. Inst. Mech. Eng. Part A J. Power Energy 2015, 229, 772–794. [Google Scholar] [CrossRef]
- Devolder, B.; Rauwoens, P.; Troch, P. Numerical simulation of a single Floating Point Absorber Wave Energy Converter using OpenFOAM®. In Progress in Renewable Energies Offshore; CRC Press: Boca Raton, FL, USA, 2016; pp. 197–205. [Google Scholar]
- Davidson, J.; Cathelain, M.; Guillemet, L.; Le Huec, T.; Ringwood, J. Implementation of an OpenFOAM Numerical Wave Tank for Wave Energy Experiments. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France, 6–11 September 2015; pp. 1–10. [Google Scholar]
- Stansby, P.; Gu, H.; Moreno, E.C.; Stallard, T. Drag minimisation for high capture width with three float wave energy converter M4. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France, 6–11 September 2015. [Google Scholar]
- Ransley, E.; Greaves, D.; Raby, A.; Simmonds, D.; Jakobsen, M.; Kramer, M. RANS-VOF modelling of the Wavestar point absorber. Renew. Energy 2017, 109, 49–65. [Google Scholar] [CrossRef]
- Babarit, A.; Folley, M.; Charrayre, F.; Peyrard, C.; Benoit, M. On the modelling of WECs in wave models using far field coefficients. In Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC), Aalborg, Denmark, 2–8 September 2013; pp. 1–9. [Google Scholar]
- McNatt, J.C.; Venugopal, V.; Forehand, D. A novel method for deriving the diffraction transfer matrix and its application to multi-body interactions in water waves. Ocean Eng. 2015, 94, 173–185. [Google Scholar] [CrossRef]
- Wolgamot, H.; Eatock Taylor, R.; Taylor, P. Effects of second-order hydrodynamics on the efficiency of a wave energy array. Int. J. Mar. Energy 2016, 15, 85–99. [Google Scholar] [CrossRef]
- Troch, P.; Stratigaki, V. Phase-Resolving Wave Propagation Array Models. In Numerical Modelling of Wave Energy Converters; Elsevier: Amsterdam, The Netherlands, 2016; pp. 191–216. [Google Scholar]
- Agamloh, E.B.; Wallace, A.K.; von Jouanne, A. Application of fluid-structure interaction simulation of an ocean wave energy extraction device. Renew. Energy 2008, 33, 748–757. [Google Scholar] [CrossRef]
- Mccallum, P.D. Numerical Methods for Modelling the Viscous Effects on the Interactions between Multiple Wave Energy Converters. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2017. [Google Scholar]
- Stratigaki, V.; Troch, P.; Stallard, T.; Forehand, D.; Kofoed, J.P.; Folley, M.; Benoit, M.; Babarit, A.; Kirkegaard, J. Wave basin experiments with large wave energy converter arrays to study interactions between the converters and effects on other users in the sea and the coastal area. Energies 2014, 7, 701–734. [Google Scholar] [CrossRef] [Green Version]
- Stratigaki, V.; Troch, P.; Stallard, T.; Forehand, D.; Folley, M.; Kofoed, J.P.; Benoit, M.; Babarit, A.; Vantorre, M.; Kirkegaard, J. Sea-state modification and heaving float interaction factors from physical modelling of arrays of wave energy converters. J. Renew. Sustain. Energy 2015, 7, 061705. [Google Scholar] [CrossRef]
- Devolder, B.; Rauwoens, P.; Troch, P. Numerical simulation of heaving Floating Point Absorber Wave Energy Converters using OpenFOAM. In Proceedings of the VII International Conference on Computational Methods in Marine Engineering, Nantes, France, 15–17 May 2017; pp. 777–788. [Google Scholar]
- Devolder, B.; Rauwoens, P.; Troch, P. Towards the numerical simulation of 5 Floating Point Absorber Wave Energy Converters installed in a line array using OpenFOAM. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC2017), Cork, Ireland, 27 August–2 September 2017; pp. 1–10. [Google Scholar]
- OpenFOAM®. OpenFOAM-3.0.1. Available online: https://openfoam.org/version/3-0-1/ (accessed on 15 December 2015).
- Berberović, E.; van Hinsberg, N.P.; Jakirlić, S.; Roisman, I.V.; Tropea, C. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Phys. Rev. E 2009, 79, 036306. [Google Scholar] [CrossRef] [PubMed]
- Sumer, B.; Fredsøe, J. Hydrodynamics around Cylindrical Structures; World Scientific: Singapore, 1997; p. 530. [Google Scholar]
- Devolder, B.; Rauwoens, P.; Troch, P. Application of a buoyancy-modified k − ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®. Coast. Eng. 2017, 125, 81–94. [Google Scholar] [CrossRef]
- Devolder, B.; Troch, P.; Rauwoens, P. Performance of a buoyancy-modified k − ω and k − ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®. Coast. Eng. 2018. under review. [Google Scholar]
- Devolder, B.; Troch, P.; Rauwoens, P. Accelerated numerical simulations of a heaving floating body by coupling a motion solver with a two-phase fluid solver. Comput. Math. Appl. 2018. under review. [Google Scholar]
- Stratigaki, V. Experimental Study and Numerical Modelling of Intra-Array Interactions and Extra-Array Effects of Wave Energy Converter Arrays. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2014. [Google Scholar]
- Higuera, P.; Lara, J.L.; Losada, I.J. Realistic wave generation and active wave absorption for Navier-Stokes models. Application to OpenFOAM. Coast. Eng. 2013, 71, 102–118. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Simulating coastal engineering processes with OpenFOAM. Coast. Eng. 2013, 71, 119–134. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 1974, 14, 361–370. [Google Scholar] [CrossRef]
Layout | Available Type of Tests | Available Results |
---|---|---|
2 -WEC array | Free decay (no PTO) [16] | WECs’ heave motion |
→ | Free decay (PTO) [17] | Surge force on WECs |
→ ④⑤ | Fixed WECs | Surface elevations |
→ | Heaving WECs | |
5-WEC array | Free decay (no PTO) [16] | |
→ | Fixed WECs | |
→ ①②③④⑤ | Heaving WECs | |
→ | ||
9-WEC array | Heaving WECs | |
→ ⑪⑫⑬ | ||
→ ①②③ | ||
→ ⑥⑦⑧ |
Result | 2-WEC Array | 5-WEC Array | 9-WEC Array | ||
---|---|---|---|---|---|
Fixed | Heaving | Fixed | Heaving | Heaving | |
/ | / | / | |||
/ | / | / | |||
/ | / | / | |||
/ | / | / | |||
/ | / | / | |||
/ | / | / | / | ||
/ | / | / | / | ||
/ | / | / | / | ||
/ | / | ||||
/ | / | ||||
/ | / | ||||
/ | / | ||||
/ | / | ||||
WG6 | / | / | |||
WG7 | / | / | |||
WG8 | / | / | |||
WG9 | |||||
WG10 | / | ||||
WG11 | / | ||||
WG12 | / | / | |||
WG13 | / | / | |||
WG14 | / | / | |||
WG15 | / | / | |||
WG17 | / | / | / | / | |
WG18 | / | / | / | / | |
WG19 | / | / | / | / | |
WG20 | / | / | / | / |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devolder, B.; Stratigaki, V.; Troch, P.; Rauwoens, P. CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves. Energies 2018, 11, 641. https://doi.org/10.3390/en11030641
Devolder B, Stratigaki V, Troch P, Rauwoens P. CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves. Energies. 2018; 11(3):641. https://doi.org/10.3390/en11030641
Chicago/Turabian StyleDevolder, Brecht, Vasiliki Stratigaki, Peter Troch, and Pieter Rauwoens. 2018. "CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves" Energies 11, no. 3: 641. https://doi.org/10.3390/en11030641
APA StyleDevolder, B., Stratigaki, V., Troch, P., & Rauwoens, P. (2018). CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves. Energies, 11(3), 641. https://doi.org/10.3390/en11030641