# Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Floating PV System Introduction and Performance

#### 2.1. Site Information of Floating PV System

#### 2.2. Power Outputs of Floating PV Versus Rooftop-Based System

## 3. Methodology of Floating PV Temperature Model

## 4. FPV Temperature Model Results and Comparisons

#### 4.1. Model Results

#### 4.2. Comparison with Land-Based PV System

#### 4.3. Comparison with Selected Temperature Models

#### 4.4. Comparison of Models with Minitab Model

## 5. FPV Module Efficiency and Power Prediction

## 6. Conclusions

_{a}), solar irradiance (G

_{t}), and wind speeds (V

_{w}). When compared to the measured FPV module temperature over entire year, the error of model 1 is 2%. Model 2 includes the three aforementioned independent variables in addition to water temperature (T

_{w}). Although the error of Model 2 increases slightly to 4%, the results are within the reasonable range of error. Fitting of the experimental data is reproduced with a minor error.

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- International Renewable Energy Agency (IRENA). Solar PV in Africa: Costs and Markets; IRENA: Abu Dhabi, UAE, 2016; Chapter 3; p. 29. [Google Scholar]
- Won, C.; Waithiru, L.; Kim, D.; Kang, B.; Kim, K.; Lee, G. Floating PV Power System Evaluation Over Five Years (2011–2016 (EU PVSEC 2016)). In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 20–24 June 2016. [Google Scholar]
- Evans, D.L. Simplified method for predicting photovoltaic array output. Sol. Energy
**1981**, 27, 555–560. [Google Scholar] [CrossRef] - Duffie, J.A.; Beckman, W.A. Solar Energy of Processes, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006; p. 3. [Google Scholar]
- Jakhrani, A.Q. Comparison of Solar Photovoltaic Module Temperature Models. World Appl. Sci. J. Spec. Issue Food Environ.
**2011**, 14, 1–8. [Google Scholar] - Lasnier, F.; Ang, T.G. Photovoltaic Engineering Handbook; Adam Hilger: New York, NY, USA, 1990; p. 80. [Google Scholar]
- Koehl, M.; Heck, M.; Wiesmeier, S.; Wirth, J. Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. C
**2011**, 95, 1638–1646. [Google Scholar] [CrossRef] - Kurtz, S.; Whitfield, K.; Miller, D.; Joyce, J.; Wohlgemuth, J.; Kempe, M.; Dhere, N.; Bosco, N.; Zgonena, T. Evaluation of high-temperature exposure of rack mounted photovoltaic modules. In Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 2399–2404. [Google Scholar]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy
**2009**, 83, 614–624. [Google Scholar] [CrossRef] - Young, K.C.; Nam, H.L.; Kern, J.K. Empirical Research on the efficiency of Floating PV systems compare with Overland Systems. In Proceedings of the 3rd International Conference on Circuits, Control, Communication, Electricity, Electronics, Energy, System, Signal and Simulation (CES-CUBE 2013), Tamuning, GU, USA, 18–20 July 2013; Volume 25, pp. 284–289. [Google Scholar]
- Green, M.A.; Blakers, A.W.; Shi, J.; Keller, E.M.; Wenham, S.R. High-Efficiency silicon solar cells. IEEE Trans. Electron Devices
**1984**, 31, 679–683. [Google Scholar] [CrossRef] - IEC Standard 61724-1:2017, Photovoltaic System Performance—Part 1: Monitoring. Available online: https://webstore.iec.ch/publication/33622 (accessed on 1 July 2017).
- Malik, A.Q.; Ming, L.C.; Sheng, T.K.; Blundell, M. Influence of Temperature on the Performance of Photovoltaic. ASEAN J. Sci. Technol. Dev.
**2010**, 26, 61–72. [Google Scholar] [CrossRef] - Ross, R.G. Interface design considerations for terrestrial solar cells modules. In Proceedings of the 12th IEEE Photovoltaic Specialist’s Conference, Baton Rouge, LA, USA, 7–10 January 1976; pp. 801–806. [Google Scholar]
- Rauschenbach, H.S. Solar Cell Array Design Handbook; Van Nosstrand Reinhold: New York, NY, USA, 1980; pp. 390–391. [Google Scholar]
- Risser, V.V.; Fuentes, M.K. Linear regression analysis of flat-plate photovoltaic system performance data. In Proceedings of the 5th Photovoltaic Solar Energy Conference, Athens, Greece, 17–21 October 1983. [Google Scholar]
- Schott, T. Operation temperatures of PV modules: A theoretical and experimental approach. In Proceedings of the Sixth EC Photovoltaic Solar Energy Conference, London, UK, 15–19 April 1985. [Google Scholar]
- MINITAB 17 Statistical Software 2010. Computer Software. Konkuk University Seoul. Minitab, Inc. Available online: www.minitab.com (accessed on 1 July 2017).
- Martineac, C.; Hopîrtean, M.; De Mey, G.; Ţopa, V.; Ştefănescu, S. Temperature Influence on Conversion Efficiency in the Case of Photovoltaic Cells. In Proceedings of the 10th International Conference on Development and Application Systems, Suceava, Romania, 27–29 May 2010; pp. 1–4. [Google Scholar]
- Sabri, L.; Benzirar, M. Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon. Int. J. Innov. Res. Sci. Eng. Technol.
**2010**, 3, 17815–17821. [Google Scholar] [CrossRef]

**Figure 2.**Monthly daily average energy of the month (kWh) and corresponding normalized power comparisons for FPV systems vs. 1000 kW rooftop system.

**Figure 6.**Histograms comparison of FPV Model 1 (

**a**), Model 2 (

**b**), Minitab data fitting model (

**c**), and module field data (

**d**).

**Figure 8.**(

**a**) Time series plot of module efficiency (Model 1); (

**b**) efficiency over module temperature.

Sensor Type | Maker | Model | Accuracy | Range | Mounting |
---|---|---|---|---|---|

Solar Irradiance | Apogee | SP-110 | ±5% | 0–1750 Wm^{2} | Leveling fixture |

Anemometer (Wind Speed) | Jinyang | WM-IV-WS | ±0.15 m/s | 0–75 m/s | Pole mount |

Accelerometer | Das | MSENS-IN360 | 0.10° | 0–360° | Pole mount |

Humidity and Temperature Probe | Vaisala | HMP155 | ±0.176% | −80–60 °C | Protective housing |

PVM Temperature | Taeyeon | DY-HW-7NN | ±0.20% | −5–55 °C | PVM rear surface |

Water Temperature | Taeyeon | DY-HW-11NN | ±0.20% | −5–55 °C | Water submerged |

Project Type | Test Bed | Floating PV | Rooftop PV |
---|---|---|---|

Site Name | Hapcheon Dam | Hapcheon Dam | Haman |

Site Coordinates | N 35.5°33′06″ E 128°00′49″ | N 35.5°33′36″ E 128°02′ 26″ | N 35° 16′10″ E 128° 24′ 01″ |

Installation Capacity | 100 kW | 500 kW | 1 MW |

Installation Year | 2011 | 2012 | 2012 |

Module Slope | 33° | 33° | 30° |

Module Type | c-Silicon | c-Silicon | c-Silicon |

Mounting | Aluminum, steel | Aluminum | Aluminum |

Mounting Type | Fixed | Fixed | Fixed |

Water Depth | 20 m | 40 m | n/a |

Output Energy | Floating PV | Rooftop PV | ||||
---|---|---|---|---|---|---|

100 kW | 500 kW | 1000 kW | ||||

Annual Output (kWh/year) | 130,305 | 693,219 | 1,197,547 | |||

Daily Yearly Average (kWh/year/days of year) | 357 | 1859 | 3281 | |||

Normal Power | Yearly | kWh/year/kWp | (h/year) | 1303 | 1386 | 1198 |

Monthly | kWh/month/kWp | (h/month) | Monthly details in Figure 2 | |||

Daily | kWh/year/days/kWp | (h/d) | 3.58 | 3.80 | 3.28 |

Term | Predictor Variables | Symbol | Unit |
---|---|---|---|

x_{1} | Ambient Temperature | ${T}_{a}$ | °C |

x_{2} | Solar Irradiance | ${G}_{T}$ | W/m² |

x_{3} | Wind Speed | ${V}_{w}$ | m/s |

x_{4} | Water Temp. | ${T}_{w}$ | °C |

Model | Empirical Models |
---|---|

Ross (1976) [14] | ${T}_{c}={T}_{a}+k{G}_{T}$ where $k=\Delta \left({T}_{c}-{T}_{a}\right)/\Delta {G}_{T}$ |

Rauschenbach (1980) [15] | ${T}_{c}={T}_{a}+\left({G}_{T}/{G}_{T,NOCT}\right)\left({T}_{c,NOCT}-{T}_{c,NOCT}\right)\left(1-{n}_{m}/\gamma \right)$ |

Risser & Fuentes (1983) [16] | ${T}_{c}=3.81+0.0282\times {G}_{T}1.31\times {T}_{a}-165{V}_{w}$ |

Schott (1985) [17] | ${T}_{c}={T}_{a}+0.028\times {G}_{T}-1$ |

Ross & Smokler (1986) [14] | ${T}_{c}={T}_{a}+0.035\times {G}_{T}$ |

Mondol et al. (2005, 2007) | ${T}_{c}={T}_{a}+0.031{G}_{T}$ ${T}_{c}={T}_{a}+0.031{G}_{T}-0.058$ |

Lasnier & Ang (1990) [5] | ${T}_{c}=30.006+0.0175\left({G}_{T}-300\right)+1.14\left({T}_{a}-25\right)$ |

Servant (1985) | ${T}_{c}={T}_{a}+\alpha {G}_{T}\left(1+\beta Ta\right)\left(1-\gamma {V}_{w}\right)\left(1-1.053{n}_{m,ref}\right)$ |

Duffie & Beckman [3] | ${T}_{c}={T}_{a}+\left({G}_{T}/{G}_{NOCT}\right)\left(9.5/5.7\times 3.8{V}_{w}\right)\left({T}_{NOCT}-{T}_{a,NOCT}\right)\left(1-{n}_{m}\right)$ |

Koehl (2011) [6] | ${T}_{c}={T}_{a}+{G}_{T}/\left({U}_{0}+{U}_{1}\times {V}_{w}\right)$ |

Kurtz S (2009) [7] | ${T}_{c}={T}_{a}+{G}_{T}\times {e}^{-3.473-0.0594\times {V}_{w}}$ |

Skoplaki (2009) [8] | ${T}_{c}={T}_{a}+\left({G}_{T}/{G}_{NOCT}\right)\times \left({T}_{NOCT}-{T}_{a,NOCT}\right)\times {h}_{w,NOCT}/{h}_{w}\times \left[1-{\eta}_{STC}/\tau \times \alpha \left(-{\beta}_{STC}{T}_{STC}\right)\right]$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Charles Lawrence Kamuyu, W.; Lim, J.R.; Won, C.S.; Ahn, H.K. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. *Energies* **2018**, *11*, 447.
https://doi.org/10.3390/en11020447

**AMA Style**

Charles Lawrence Kamuyu W, Lim JR, Won CS, Ahn HK. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. *Energies*. 2018; 11(2):447.
https://doi.org/10.3390/en11020447

**Chicago/Turabian Style**

Charles Lawrence Kamuyu, Waithiru, Jong Rok Lim, Chang Sub Won, and Hyung Keun Ahn. 2018. "Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs" *Energies* 11, no. 2: 447.
https://doi.org/10.3390/en11020447