Performance Analysis of a RED-MED Salinity Gradient Heat Engine
Abstract
:1. Introduction
2. Description and Modeling of the Systems
2.1. Reverse Electrodialysis Process
2.2. MED Process
- The theoretical number of effects has been established in order to maximise the thermal efficiency of the system, yet guaranteeing a minimum effective driving force in each effect of at least 1 °C. The total number of effects is significantly limited in the cases with high RR and, consequently, high values of concentration and BPE are reached in the last effects.
- In all cases, the temperature of the cooling water at the inlet of the condenser has been fixed at 20 °C, which is assumed as the temperature of the cooling source.
- The temperature of the feed salt solution at the inlet of the MED plant has been established as 25 °C (this is the operating temperature assumed for the RED process).
- In all cases, the temperature of the concentrated solution in the last effect was assumed equal to 35 °C and the total distillate production equal to 100 m3/day, respectively. The capacity does not have influence on the performance of the process.
2.3. RED-MED Coupled System
3. Results
3.1. RED Model Results
RED Performance with Ideal IEMs
3.2. MED Model Results
3.3. RED-MED Integrated System
3.3.1. Analysis of the Integrated RED-MED System Performance with Current IEMs
3.3.2. Analysis of the Integrated RED-MED System Performance with Ideal IEMs
3.4. Overview of the Effects of Ideal Membranes on the System Performance
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
area, m2 | |
membrane width, m | |
molar concentration, mol/m3 | |
diffusion coefficient, m2/s | |
average specific heat at constant pressure, J/(kg·°C) | |
voltage, V | |
exergy rate, kW | |
Faraday constant, C/mol | |
Gibbs free energy rate, kW | |
height, m | |
specific enthalpy, kJ/kg | |
electric current, A | |
trans-membrane flux, m3/(m2·s) | |
ionic current density, A/m2 | |
water permeability coefficient, m/(Pa⋅s) | |
mass flow rate, kg/s | |
molality, mol/kg | |
molarity, mol/L or molar mass, g/mol | |
number of effects of the MED unit or number of cell pairs | |
molar flow rate, mol/s | |
total hydration number | |
pressure, bar | |
power, W | |
volumetric flow rate, m3/s | |
electrical resistance, Ω⋅cm2 | |
universal gas constant, J/(mol·K) | |
spacer shadow factor | |
temperature, °C or K | |
overall heat transfer coefficient, W/(m2·K) | |
velocity, cm/s | |
specific work, kJ/kg | |
electric power, MW | |
salinity, ppm | |
yield | |
Subscripts | |
ambient | |
anode | |
average | |
brine | |
Carnot or condensation | |
cathode | |
concentrate | |
condensation | |
coulombic | |
cooling water | |
density | |
distillate | |
diffusive | |
dilute | |
evaporator | |
electro-osmotic | |
exergy | |
external | |
feed | |
flash box | |
flash in the effect | |
high | |
inlet | |
low | |
osmotic | |
preheater | |
heat | |
heating steam | |
saturation | |
solution | |
total | |
vapor | |
waste heat | |
Superscripts | |
c | condenser |
vapor/condensate conditions after the demister | |
vapor/condensate conditions in the flash box | |
Greek | |
permselectivity or fraction of vapor condensed in a preheater | |
activity coefficient | |
thickness of the spacer, m | |
efficiency | |
polarization coefficient | |
specific enthalpy of evaporation/condensation, kJ/kg | |
equivalent conductance, S·cm2/mol | |
chemical potential, kJ/mol | |
Van’t Hoff factor | |
osmotic pressure, bar | |
density, kg/m3 | |
osmotic coefficient | |
Acronyms and abbreviations | |
AEM | Anion Exchange Membrane |
BPE | Boiling Point Elevation |
CC | Carbon carrier Cycle |
CEM | Cation Exchange Membrane |
EES | Engineering Equation Solver |
FF | Forward Feed |
IEM | Ion Exchange Membrane |
KC | Kalina Cycle |
LMTD | Log Mean Temperature Difference |
MED | Multi-Effect Distillation |
ORC | Organic Rankine Cycle |
PG | Piezoelectric Generator |
RED | Reverse ElectroDialysis |
RR | Recovery Ratio |
SE | Stirling Engine |
SG-HE | Salinity Gradient Heat Engine |
SGP | Salinity Gradient Power |
SRC | Steam Rankine Cycle |
STC | Specific Thermal Consumption |
TEG | Thermo Electric Generation |
TPC | Thermal Power Consumption |
References
- Nguyen, T.Q.; Slawnwhite, J.D.; Boulama, K.G. Power generation from residual industrial heat. Energy Convers. Manag. 2010, 51, 2220–2229. [Google Scholar] [CrossRef]
- Khatita, M.A.; Ahmed, T.S.; Ashour, F.H.; Ismail, I.M. Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: A case study. Energy 2014, 64, 462–472. [Google Scholar] [CrossRef]
- Johnson, I.; Choate, W.T.; Davidson, A. Waste Heat Recovery. Technology and Opportunities in U.S. Industry; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2008.
- Kermani, M.; Wallerand, A.S.; Kantor, I.D.; Maréchal, F. Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes. Appl. Energy 2018, 212, 1203–1225. [Google Scholar] [CrossRef]
- Bendig, M.; Maréchal, F.; Favrat, D. Defining “Waste Heat” for industrial processes. Appl. Therm. Eng. 2013, 61, 134–142. [Google Scholar] [CrossRef]
- Wallerand, A.S.; Kermani, M.; Kantor, I.; Maréchal, F. Optimal heat pump integration in industrial processes. Appl. Energy 2018, 219, 68–92. [Google Scholar] [CrossRef] [Green Version]
- Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E. Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 2013, 58, 147–156. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Wang, M.; Ma, S.; Dai, Y. Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source. Energy 2013, 49, 356–365. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Q.; Wang, M.; Feng, X. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery. Energy Convers. Manag. 2017, 143, 482–492. [Google Scholar] [CrossRef]
- Jung, H.C.; Krumdieck, S.; Vranjes, T. Feasibility assessment of refinery waste heat-to-power conversion using an organic Rankine cycle. Energy Convers. Manag. 2014, 77, 396–407. [Google Scholar] [CrossRef]
- Kaşka, Ö. Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry. Energy Convers. Manag. 2014, 77, 108–117. [Google Scholar] [CrossRef]
- Uusitalo, A.; Honkatukia, J.; Turunen-Saaresti, T. Evaluation of a small-scale waste heat recovery organic Rankine cycle. Appl. Energy 2017, 192, 146–158. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Yue, L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Appl. Energy 2017, 196, 259–267. [Google Scholar] [CrossRef]
- Tavakolpour-Saleh, A.R.; Zare, S.; Bahreman, H. A novel active free piston Stirling engine: Modeling, development, and experiment. Appl. Energy 2017, 199, 400–415. [Google Scholar] [CrossRef]
- Yip, N.Y.; Brogioli, D.; Hamelers, H.V.M.; Nijmeijer, K. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Environ. Sci. Technol. 2016, 50, 12072–12094. [Google Scholar] [CrossRef] [PubMed]
- Post, J.W.; Veerman, J.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Nymeijer, K.; Buisman, C.J.N. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Memb. Sci. 2007, 288, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Logan, B.E.; Elimelech, M.; States, U. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319. [Google Scholar] [CrossRef]
- Yip, N.Y.; Elimelech, M. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis. Environ. Sci. Technol. 2014, 48, 11002–11012. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.G.; Zhang, W.; Luo, J.; Chen, Y. Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. Appl. Energy 2013, 110, 244–251. [Google Scholar] [CrossRef]
- Farrell, E.; Hassan, M.I.; Tufa, R.A.; Tuomiranta, A.; Avci, A.H.; Politano, A.; Curcio, E.; Arafat, H.A. Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture. Appl. Energy 2017, 187, 390–409. [Google Scholar] [CrossRef]
- Tamburini, A.; Cipollina, A.; Papapetrou, M.; Piacentino, A.; Micale, G. Salinity gradient engines. In Sustainable Energy from Salinity Gradient; Cipollina, A., Micale, G., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 219–256. [Google Scholar]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Memb. Sci. 2009, 343, 42–52. [Google Scholar] [CrossRef]
- Altaee, A.; Palenzuela, P.; Zaragoza, G.; AlAnezi, A.A. Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance. Appl. Energy 2017, 191, 328–345. [Google Scholar] [CrossRef]
- Długołecki, P.; Gambier, A.; Nijmeijr, K.; Wessling, M. Practical Potential of Reverse Electrodialysis as Process for Sustainable Energy Generation. Environ. Sci. Technol. 2009, 43, 6888–6894. [Google Scholar] [CrossRef] [PubMed]
- Vermaas, D.A.; Guler, E.; Saakes, M.; Nijmeijer, K. Theoretical power density from salinity gradients using reverse electrodialysis. Energy Procedia 2012, 20, 170–184. [Google Scholar] [CrossRef]
- Conversion of Low Grade Heat to Power through closed loop Reverse ElectroDialysis—Horizon 2020 programme, Project Number: 640667. Available online: www.red-heat-to-power.eu (accessed on 4 September 2018).
- McGinnis, R.L.; McCutcheon, J.R.; Elimelech, M. A novel ammonia-carbon dioxide osmotic heat engine for power generation. J. Memb. Sci. 2007, 305, 13–19. [Google Scholar] [CrossRef]
- Bevacqua, M.; Tamburini, A.; Papapetrou, M.; Cipollina, A.; Micale, G.; Piacentino, A. Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion. Energy 2017, 137, 1293–1307. [Google Scholar] [CrossRef]
- Tamburini, A.; Tedesco, M.; Cipollina, A.; Micale, G.; Ciofalo, M.; Papapetrou, M.; Van Baak, W.; Piacentino, A. Reverse electrodialysis heat engine for sustainable power production. Appl. Energy 2017, 206, 1334–1353. [Google Scholar] [CrossRef]
- Cipollina, A.; Micale, G.; Rizzuti, L. Seawater Desalination: Conventional and Renewable Energy Processes; Springer: Berlin, Germany, 2009. [Google Scholar]
- Ortega-Delgado, B.; Palenzuela, P.; Alarcón-Padilla, D.-C. Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration into a Rankine cycle power block. Desalination 2016, 394, 18–29. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Cipollina, A.; Di Sparti, M.G.; Tamburini, A.; Micale, G. Development of a Membrane Distillation module for solar energy seawater desalination. Chem. Eng. Res. Des. 2012, 90, 2101–2121. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Long, R.; Li, B.; Liu, Z.; Liu, W. Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. J. Memb. Sci. 2017, 525, 107–115. [Google Scholar] [CrossRef]
- Hu, J.; Xu, S.; Wu, X.; Wu, D.; Jin, D.; Wang, P.; Leng, Q. Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation—reverse electrodialysis power generation system. Desalination 2018, 443, 172–183. [Google Scholar] [CrossRef]
- Palenzuela, P.; Zaragoza, G.; Alarcón-Padilla, D.C. Characterisation of the coupling of multi-effect distillation plants toconcentrating solar power plants. Energy 2015, 82, 986–995. [Google Scholar] [CrossRef]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; van Baak, W.; Micale, G. Modelling the Reverse ElectroDialysis process with seawater and concentrated brines. Desalin. Water Treat. 2012, 49, 404–424. [Google Scholar] [CrossRef] [Green Version]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: A validated process model for design and optimization. Chem. Eng. J. 2011, 166, 256–268. [Google Scholar] [CrossRef]
- Post, J.W.; Goeting, C.H.; Valk, J.; Goinga, S.; Veerman, J.; Hamelers, H.V.M.; Hack, P.J.F.M. Towards implementation of reverse electrodialysis for power generation from salinity gradients. Desalin. Water Treat. 2010, 16, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Bogle, I.D.L.; Micale, G. A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chem. Eng. Res. Des. 2015, 93, 441–456. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.G.; Zhang, B.; Glabman, S.; Uzal, N.; Dou, X.; Zhang, H.; Wei, X.; Chen, Y. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. J. Memb. Sci. 2015, 486, 71–88. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B.; Nikonenko, V.V. Ion-exchange membrane materials: Properties, modification, and practical application. Nanotechnologies Russ. 2009, 4, 137–159. [Google Scholar] [CrossRef]
- Scialdone, O.; Guarisco, C.; Grispo, S.; Angelo, A.D.; Galia, A. Investigation of electrode material—Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples. J. Electroanal. Chem. 2012, 681, 66–75. [Google Scholar] [CrossRef]
- Giacalone, F.; Catrini, P.; Tamburini, A.; Cipollina, A.; Piacentino, A.; Micale, G. Exergy analysis of reverse electrodialysis. Energy Convers. Manag. 2018, 164, 588–602. [Google Scholar] [CrossRef]
- Pitzer, K.S. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. J. Phys. Chem. 1973, 77, 268–277. [Google Scholar] [CrossRef]
- Van Der Stegen, J.H.G.; Weerdenburg, H.; Van Der Veen, A.J.; Hogendoorn, J.A.; Versteeg, G.F. Application of the Pitzer model for the estimation of activity coefficients of electrolytes in ion selective membranes. Fluid Phase Equilib. 1999, 157, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, K.S. Electrolyte Theory-Improvements since Debye and Huckel. Acc. Chem. Res. 1977, 10, 371–377. [Google Scholar] [CrossRef]
- Jones, G.; Bickford, C.F. The Conductance of Aqueous Solutions as a Function of the Concentration. I. Potassium Bromide and Lanthanum Chloride. J. Am. Chem. Soc. 1934, 56, 602–611. [Google Scholar] [CrossRef]
- Veerman, J.; Post, J.W.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model. J. Memb. Sci. 2008, 310, 418–430. [Google Scholar] [CrossRef] [Green Version]
- Palenzuela, P.; Hassan, A.S.; Zaragoza, G.; Alarcón-Padilla, D.-C. Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination 2014, 337, 31–42. [Google Scholar] [CrossRef]
- El-Dessouky, H.T.; Ettouney, H.M. Fundamentals of Salt Water Desalination; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Alasfour, F.N.; Darwish, M.A.; Bin Amer, A.O. Thermal analysis of ME—TVC+MEE desalination systems. Desalination 2005, 174, 39–61. [Google Scholar] [CrossRef]
- Al-Mutaz, I.S.; Wazeer, I. Development of a steady-state mathematical model for MEE-TVC desalination plants. Desalination 2014, 351, 9–18. [Google Scholar] [CrossRef]
- Ortega-Delgado, B.; García-Rodríguez, L.; Alarcón-Padilla, D.-C. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. Desalin. Water Treat. 2017, 97. [Google Scholar] [CrossRef]
- Klein, S.A. Engineering Equation Solver Software (EES); F-Chart Software: Madison, WI, USA, 2013. [Google Scholar]
- Kingsbury, R.S.; Liu, F.; Zhu, S.; Boggs, C.; Armstrong, M.D.; Call, D.F.; Coronell, O. Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis. J. Memb. Sci. 2017, 541, 621–632. [Google Scholar] [CrossRef]
- Giacalone, F.; Olkis, C.; Santori, G.; Cipollina, A.; Brandani, S.; Micale, G. Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis. Energy 2019, 166, 674–689. [Google Scholar] [CrossRef]
- Micari, M.; Bevacqua, M.; Cipollina, A.; Tamburini, A.; Van Baak, W.; Putts, T.; Micale, G. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. J. Memb. Sci. 2018, 551, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Kingsbury, R.S.; Call, D.F.; Coronell, O. Impact of solution composition on the resistance of ion exchange membranes. J. Memb. Sci. 2018, 554, 39–47. [Google Scholar] [CrossRef]
[mol/L] | Recovery Ratio [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 |
1 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 |
1.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | |
2 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | ||
2.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | |||
3 | 10 | 15 | 20 | 25 | 30 | 40 | ||||
3.5 | 10 | 15 | 20 | 25 | 30 | |||||
4 | 10 | 15 | 20 |
Scenario | RCEM = RAEM [Ω⋅cm2] | Lp [m⋅Pa−1⋅s−1] | Ds [m2⋅s−1] | α [%] |
---|---|---|---|---|
Current membrane | 1.5(c) | 2.22∙10−14(a,d) | 10−12(d) | 95–98(b) |
Ideal membrane | ¼⋅RIEM,current(d) | 0(d) | 0(d) | 100(d) |
IEM Properties | RED Power | CRED,H,out | CRED,L,out | MED STC | Global Efficiency | |
---|---|---|---|---|---|---|
Resistance (RCEM = RAEM) | ↓ | ↑↑↑ | ↓ | ↑↑ | ↑↑ | ↑↑↑ |
Permselectivity (α) | ↑ | ↑↑↑ | ↓ | ↑ | ↑ | ↑↑↑ |
Water permeability () | ↓ | ↑↑ | ↑↑↑ | ↓ | ↓ | ↑↑ |
Salt diffusivity () | ↓ | ↑ | ↑ | ↓ | ↓ | ↑ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palenzuela, P.; Micari, M.; Ortega-Delgado, B.; Giacalone, F.; Zaragoza, G.; Alarcón-Padilla, D.-C.; Cipollina, A.; Tamburini, A.; Micale, G. Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies 2018, 11, 3385. https://doi.org/10.3390/en11123385
Palenzuela P, Micari M, Ortega-Delgado B, Giacalone F, Zaragoza G, Alarcón-Padilla D-C, Cipollina A, Tamburini A, Micale G. Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies. 2018; 11(12):3385. https://doi.org/10.3390/en11123385
Chicago/Turabian StylePalenzuela, Patricia, Marina Micari, Bartolomé Ortega-Delgado, Francesco Giacalone, Guillermo Zaragoza, Diego-César Alarcón-Padilla, Andrea Cipollina, Alessandro Tamburini, and Giorgio Micale. 2018. "Performance Analysis of a RED-MED Salinity Gradient Heat Engine" Energies 11, no. 12: 3385. https://doi.org/10.3390/en11123385
APA StylePalenzuela, P., Micari, M., Ortega-Delgado, B., Giacalone, F., Zaragoza, G., Alarcón-Padilla, D.-C., Cipollina, A., Tamburini, A., & Micale, G. (2018). Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies, 11(12), 3385. https://doi.org/10.3390/en11123385