Electrocatalytic Activity of Pd/Ir/Sn/Ta/TiO2 Composite Electrodes
Abstract
:1. Introduction
2. Experimental
2.1. Electrode
2.2. Electrochemical Characterization
2.3. Accelerated Life Test
3. Results and Discussion
3.1. Characterization of the Pd-Based Electrode
3.2. Electroactive Properties of the Pd-Based Electrode
3.3. ALT Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ojebuoboh, F.; Wang, S.; Maccagni, M. Refining primary lead by granulation-leaching-electrowining. J. Miner. Met. Mater. Soc. 2003, 55, 19–23. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, J.; Sun, Y.; Feng, Y.; Niu, H. An Energy saving and fluorine-free Electrorefining process for Ultrahigh Purity Lead Refining. Chin. J. Chem. Eng. 2018. [CrossRef]
- Kirchhoff, M. Promoting sustainability through green chemistry. Resour. Conserv. Recy. 2005, 44, 237–243. [Google Scholar] [CrossRef]
- Owais, A. Effect of electrolyte characteristics on electrowinning of copper powder. J. Appl. Electrochem. 2009, 39, 1587–1595. [Google Scholar] [CrossRef]
- Nguyen, T.; Atrens, A. Influence of lead dioxide surface films on anodic oxidation of a lead alloy under conditions typical of copper electrowinning. J. Appl. Electrochem. 2008, 38, 569–577. [Google Scholar] [CrossRef]
- Kulandaisamy, S.; Rethinaraj, J.P.; Chockalingam, S.C.; Visvanathan, S.; Venkateswaran, K.V.; Ramachandran, P.; Nandakumar, V. Performance of catalytically activated anodes in the electrowinning of metals. J. Appl. Electrochem. 1997, 27, 579–583. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Yu, Q.; Zhu, W.; Cui, W. Electrocatalytic Activity of Ti/Al/Ti/PbO2-WC Rod Composite Electrodes During Zinc Electrowinning. Int. J. Electrochem. Sci. 2018, 13, 4367–4378. [Google Scholar] [CrossRef]
- Amadelli, R.; Maldotti, A.; Molinari, A.; Danilov, F.I.; Velichenko, A.B. Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media. J. Electroanal. Chem. 2002, 534, 1–12. [Google Scholar] [CrossRef]
- Hrussanova, A.; Mirkova, L.; Dobrev, T. Anodic behaviour of the Pb–Co3O4 composite coating in copper electrowinning. Hydrometallurgy 2001, 60, 199–213. [Google Scholar] [CrossRef]
- Cui, W.; Chen, Z.; Yu, Q.; Zhu, W.; Li, H.; Wang, H. Preparation of Ti/PbO2-ZrO2 Composite Anode for Zn Electrowinnig. J. Electroanal. Chem. 2018, 13, 1400–1412. [Google Scholar] [CrossRef]
- Han, Z.; Zhu, P.; Xu, L.; Kannan, C.S.; Guo, S.; Liu, J.; Koppala, S.; Ju, S. Electrochemical properties of the IrO2-Ta2O5 coated anodes with Al/Ti and Cu/Ti layered composites substrates. J. Alloys Compd. 2018. [Google Scholar] [CrossRef]
- Huang, C.A.; Yang, S.W.; Chen, C.Z.; Hsu, F.-Y. Electrochemical behavior of IrO2-Ta2O5/Ti anodes prepared with different surface pretreatments of Ti substrate. Surf. Coat. Technol. 2017, 320, 270–278. [Google Scholar] [CrossRef]
- Liu, B.; Wang, C.; Chen, Y. Surface determination and electrochemical behavior of IrO2-RuO2-SiO2 ternary oxide coatings in oxygen evolution reaction application. Electrochim. Acta 2018, 264, 350–357. [Google Scholar] [CrossRef]
- Zhong, S.; Lai, Y.; Jiang, L.; Lü, X.; Chen, P.; Li, J.; Liu, Y. Fabrication and anodic polarization behavior of lead-based porous anodes in zinc electrowinning. J. Cent. South Univ. Technol. 2008, 15, 757–762. [Google Scholar] [CrossRef]
- Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J.-P.; Savan, A.; Shrestha, B.R.; Merzlikin, S.; Breitbach, B.; Ludwig, A.; Mayrhofer, K.J.J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180. [Google Scholar] [CrossRef]
- Gurung, K.; Ncibi, M.C.; Shestakova, M.; Sillanpää, M. Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Appl. Catal. B: Environ. 2018, 221, 329–338. [Google Scholar] [CrossRef]
- Zhang, W.; Ghali, E.; Houlachi, G. Review of oxide coated catalytic titanium anodes performance for metal electrowinning. Hydrometallurgy 2017, 169, 456–467. [Google Scholar] [CrossRef]
- Zhang, W.; Robichaud, M.; Ghali, E.; Houlachi, G. Electrochemical behavior of mesh and plate oxide coated anodes during zinc electrowinning. Trans. Nonferrous Met. Soc. China 2016, 26, 589–598. [Google Scholar] [CrossRef]
- Chen, B.; Wang, S.; Liu, J.; Huang, H.; Dong, C.; He, Y.; Yan, W.; Guo, Z.; Xu, R.; Yang, H. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning. Corros. Sci. 2018, 144, 136–144. [Google Scholar] [CrossRef]
- Mraz, R.; Krysa, J. Long service life IrO2/Ta2O5 electrodes for electroflotation. J. Appl. Electrochem. 1994, 24, 1262–1266. [Google Scholar] [CrossRef]
- Tayal, J.; Rawat, B.; Basu, S. Bi-metallic and tri-metallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int. J. Hydrog. Energy 2011, 36, 14884–14897. [Google Scholar] [CrossRef]
- Oliveira, F.H.; Osugi, M.E.; Paschoal, F.M.M.; Profeti, D.; Olivi, P.; Zanoni, M.V.B. Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1−x)IrxO2 electrodes. J. Appl. Electrochem. 2007, 37, 583–592. [Google Scholar] [CrossRef]
- Lin, S.-M. Oxygen Evolution on Ir-Ru-Sn Ternary Oxide-Coated Electrodes in H2SO4 Solution. J. Electrochem. Soc. 1993, 140, 2265–2271. [Google Scholar] [CrossRef]
- Chen, G.; Chen, X.; Yue, P.L. Electrochemical Behavior of Novel Ti/IrOx−Sb2O5−SnO2 Anodes. J. Phys. Chem. B 2002, 106, 4364–4369. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Yue, P.L. Stable Ti/IrOx−Sb2O5−SnO2 Anode for O2 Evolution with Low Ir Content. J. Phys. Chem. B 2001, 105, 4623–4628. [Google Scholar] [CrossRef]
- Grdeń, M.; Łukaszewski, M.; Jerkiewicz, G.; Czerwiński, A. Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 2008, 53, 7583–7598. [Google Scholar] [CrossRef]
- Lim, E.J.; Kim, Y.; Choi, S.M.; Lee, S.; Noh, Y.; Kim, W.B. Binary PdM catalysts (M = Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1-propanol) under alkaline conditions. J. Mater. Chem. A 2015, 3, 5491–5500. [Google Scholar] [CrossRef]
- Burke, L.D. An Examination of the Electrochemical Behavior of Palladium Electrodes in Acid. J. Electrochem. Soc. 1993, 140, 1284. [Google Scholar] [CrossRef]
- Han, Z.; Xu, L.; Kannan, C.S.; Liu, J.; Koppala, S.; Ju, S.; Zhang, L. Preparation and electrochemical properties of Al/TiB2/β-PbO2 layered composite electrode materials for electrowinning of nonferrous metals. Ceram. Int. 2018, 44, 18420–18428. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kang, D.-K.; Lee, K.; Chang, D. An Investigation on the Electrochemical Characteristics of Ta2O5-IrO2 Anodes for the Application of Electrolysis Process. Mater. Sci. Appl. 2011, 2, 237–243. [Google Scholar] [CrossRef]
Anode | 1.8 g Pd-IST/TiO2 | 4.7 g Pd-IST/TiO2 | 8.6 g Pd-IST/TiO2 | 15.4 g Pd-IST/TiO2 |
---|---|---|---|---|
Initial voltage | 3.84 | 3.98 | 3.74 | 3.24 |
Current density (mA/cm2) | - | 10,000 | ||
Cathode | - | Ti plate (20 mm × 20 mm) | ||
Electrolyte | - | 3 M H2SO4 | ||
Anode-Cathode distance (mm) | - | 5 | ||
Temperature (C) | - | 20 |
Electrode Materials | Composition (wt.%) | Resistance (Ω) ± R.S.D. (%) | |||
---|---|---|---|---|---|
Pd | Ir | Sn | Ta | ||
0 g Pd-IST/TiO2 | 0 | 52.8 | 40.7 | 6.5 | 0.28 ± 2.2 |
1.8 g Pd-IST/TiO2 | 1.8 | 44.5 | 28.7 | 25.1 | 0.30 ± 3.1 |
4.7g Pd-IST/TiO2 | 4.7 | 47.5 | 30.5 | 25.2 | 0.33 ± 4.3 |
8.6 g Pd-IST/TiO2 | 8.6 | 39.9 | 18.5 | 33.0 | 0.38 ± 1.9 |
15.4 g Pd-IST/TiO2 | 15.4 | 45.6 | 20.6 | 18.4 | 0.60 ± 2.1 |
Electrode Materials | Overvoltage (V) | Potential Slope ± R.S.D. (%) | |||
---|---|---|---|---|---|
1 mA/cm2 | 10 mA/cm2 | 100 mA/cm2 | 200 mA/cm2 | ||
0 g Pd-IST/TiO2 | 1.36 | 1.44 | 1.59 | 1.67 | 388 ± 2.8 |
1.8 g Pd-IST/TiO2 | 1.37 | 1.44 | 1.57 | 1.66 | 690 ± 3.9 |
4.7 g Pd-IST/TiO2 | 1.36 | 1.42 | 1.55 | 1.65 | 707 ± 4.7 |
8.6 g Pd-IST/TiO2 | 1.34 | 1.40 | 1.51 | 1.34 | 831 ± 2.4 |
15.4 g Pd-IST/TiO2 | 1.35 | 1.41 | 1.53 | 1.35 | 812 ± 2.6 |
Anode | 1.8 g Pd-IST/TiO2 | 4.7 g Pd-IST/TiO2 | 8.6 g Pd-IST/TiO2 | 15.4g Pd-IST/TiO2 |
---|---|---|---|---|
Slope (V/h) | 0.10 | 0.06 | 0.01 | 0.05 |
Average Voltage (V) | 4.28 | 4.18 | 4.06 | 3.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.E.; Yang, S.K.; Kim, J.H.; Park, M.-J.; Lee, E.S. Electrocatalytic Activity of Pd/Ir/Sn/Ta/TiO2 Composite Electrodes. Energies 2018, 11, 3356. https://doi.org/10.3390/en11123356
Park JE, Yang SK, Kim JH, Park M-J, Lee ES. Electrocatalytic Activity of Pd/Ir/Sn/Ta/TiO2 Composite Electrodes. Energies. 2018; 11(12):3356. https://doi.org/10.3390/en11123356
Chicago/Turabian StylePark, Jung Eun, Seung Kyu Yang, Ji Hyun Kim, Mi-Jung Park, and Eun Sil Lee. 2018. "Electrocatalytic Activity of Pd/Ir/Sn/Ta/TiO2 Composite Electrodes" Energies 11, no. 12: 3356. https://doi.org/10.3390/en11123356
APA StylePark, J. E., Yang, S. K., Kim, J. H., Park, M.-J., & Lee, E. S. (2018). Electrocatalytic Activity of Pd/Ir/Sn/Ta/TiO2 Composite Electrodes. Energies, 11(12), 3356. https://doi.org/10.3390/en11123356