Simulation Study of Power Management for a Highly Reliable Distribution System using a Triple Active Bridge Converter in a DC Microgrid
Abstract
:1. Introduction
2. Modeling of the Power Distribution System with the TAB Converter
2.1. Topology of the TAB Converter
2.2. Modeling of the Power Distribution System with the TAB Converter
3. Power Management for the Proposed Distributed System
3.1. Phase-Shift Control of the TAB Converter
3.2. Load Balancing Control
4. Power Management Simulation
4.1. Simulation Setup
4.2. Simulation Results
4.3. Discussion of the TAB Converter and Overall System Losses
5. Reliability Assessment of Power Distribution System
5.1. Definition of the Reliability
5.2. Reliability Block Diagram Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hernandez, L. A survey on electric power demand forecasting: Future trends in smart grids microgrids and smart buildings. IEEE Commun. Surv. Tutor. 2014, 16, 1460–1495. [Google Scholar] [CrossRef]
- Caramanis, M.; Ntakou, E.; Hogan, W.W.; Chakrabortty, A.; Schoene, J. Co-Optimization of Power and Reserves in Dynamic T&D Power Markets With Nondispatchable Renewable Generation and Distributed Energy Resources. Proc. IEEE 2016, 104, 807–836. [Google Scholar]
- Lu, S.; Wang, L.; Lo, T.; Prokhorov, A.V. Integration of Wind Power and Wave Power Generation Systems Using a DC Microgrid. IEEE Trans. Ind. Appl. 2014, 51, 2753–2761. [Google Scholar] [CrossRef]
- Eghtedarpour, N.; Farjah, E. Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid. IET Renew. Power Gener. 2014, 8, 45–57. [Google Scholar] [CrossRef]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Patterson, T. DC come home: DC microgrids and the birth of the enemet. IEEE Power Energy Mag. 2012, 10, 60–69. [Google Scholar] [CrossRef]
- Barklund, E.; Pogaku, N.; Prodanovic, M. Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans. Power Electron. 2008, 23, 2346–2352. [Google Scholar] [CrossRef]
- Elsayed, A.T.; Mohamed, A.A.; Mohammed, O.A. DC microgrids and distribution systems: An overview. Electr. Power Syst. Res. 2015, 119, 407–417. [Google Scholar] [CrossRef]
- Becker, D.; Sonnenberg, B. DC microgrids in buildings and data centers. In Proceedings of the IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011. [Google Scholar]
- Liu, B. System operation and energy management of a renewable energy-based DC micro-grid for high penetration depth application. IEEE Trans. Smart Grid 2015, 6, 1147–1155. [Google Scholar] [CrossRef]
- Mei, Q.; Xu, Z.L.; Wu, W.Y. A novel multi-port dc-dc converter for hybrid renewable energy distributed generation systems connected to power grid. In Proceedings of the 2008 IEEE International Conference on Industrial Technology, Chengdu, China, 26 August 2008. [Google Scholar]
- Xu, H.G.; He, J.P.; Qin, Y.; Li, Y.H. Energy management and control strategy for dc micro-grid in data center. In Proceedings of the 2012 China International Conference on Electricity Distribution, Shanghai, China, 10–14 September 2012. [Google Scholar]
- Kumar, M.; Srivastava, S.C.; Singh, S.N. Control strategies of a dc microgrid for grid connected and islanded operations. IEEE Trans. Smart Grid 2015, 7, 1588–1601. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Lin, X.; Mohsenian-Rad, H. Exploring smart grid and data center interactions for electric power load balancing. ACM SIGMETRICS Perform. Eval. Rev. 2013, 41, 89–94. [Google Scholar] [CrossRef]
- Chen, W.; Wu, X.; Yao, L.; Jiang, W.; Hu, R. A step-up resonant converter for grid-connected renewable energy sources. IEEE Trans. Power Electron. 2015, 30, 3017–3029. [Google Scholar] [CrossRef]
- Mu, Q.; Liang, J.; Li, Y.; Zhou, X. Power flow control devices in DC grids. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Deng, F.; Chen, Z. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid. IEEE Trans. Power Electron. 2013, 28, 314–324. [Google Scholar] [CrossRef]
- Udagawa, Y.; Matsuo, H. Power Supply Technology and Air Conditioning Technology for ICT. NTT Technical Review. Available online: https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201411fa10.html (accessed on 31 July 2018).
- Arno, R.; Friedl, A.; Gross, P.; Schuerger, R.J. Reliability of data centers by tier classification. IEEE Trans. Ind. Appl. 2012, 48, 777–783. [Google Scholar] [CrossRef]
- Wiboonrat, M. An empirical study on data center system failure diagnosis. In Proceedings of the 3rd International Conference on Internet Monitoring and Protection, IEEE Computer Society, Washington, DC, USA, 29 June–5 July 2008. [Google Scholar]
- Katagiri, K. Power flow control of triple active bridge converter equipped with AC/DC converter for constructing autonomous hybrid AC/DC microgrid systems. In Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Kado, Y.; Shichijo, D.; Wada, K.; Iwatsuki, K. Multiport power router and its impact on future smart grids. Radio Sci. 2016, 51, 1234–1246. [Google Scholar] [CrossRef]
- Yu, Y.; Masumoto, K.; Wada, K.; Kado, Y. A DC Power Distribution System in a Data Center using a Triple Active Bridge DC-DC Converter. IEEJ J. Ind. Appl. 2018, 7, 202–209. [Google Scholar] [CrossRef]
- Yu, Y.; Masumoto, K.; Wada, K.; Kado, Y. Power flow control of a triple active bridge DC-DC converter using GaN power devices for a low-voltage DC power distribution system. In Proceedings of the IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC—ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017. [Google Scholar]
- Nishimoto, K.; Kado, Y.; Wada, K. Implementation of Decoupling Power Flow Control System in Triple Active Bridge Converter Rated at 400 V, 10 kW, and 20 kHz. IEEJ J. Ind. Appl. 2018, 7, 410–415. [Google Scholar]
- Zhao, C.; Round, S.D.; Kolar, J.W. An isolated three-port bidirectional DC-DC converter with decoupled power flow management. IEEE Trans. Power Electron. 2008, 23, 2443–2453. [Google Scholar] [CrossRef]
- Katagiri, K.; Nakagawa, S.; Kado, Y.; Wada, K. Analysis on Load-Factor Dependence of Triple Active Bridge Converter’s Transmission Efficiency for Autonomous Power Networks. In Proceedings of the IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017. [Google Scholar]
- Nakahara, M.; Wada, K. Loss Analysis of Magnetic Components for a Solid-State-Transformer. IEEJ J. Ind. Appl. 2015, 4, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Levitin, G.; Xing, L.; Ben-Haim, H.; Dai, Y. Reliability of series-parallel systems with random failure propagation time. IEEE Trans. Reliab. 2013, 62, 637–647. [Google Scholar] [CrossRef]
- Heising, C. IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, 1st ed.; IEEE Inc.: New York, NY, USA, 2007; ISBN 9781504431866. [Google Scholar]
- ANSI/VITA 51.1, “American National Standard for Reliability Prediction”, MIL-HDBK-217. Available online: https://snebulos.mit.edu/projects/reference/MIL-STD/MIL-HDBK-217F-Notice2.pdf (accessed on 31 July 2018).
DC Voltage VDC | Switching Frequency | External Inductance | Transformer Leakage Inductance |
---|---|---|---|
380 V | 15 kHz | 43.47 µH | 1.1 µH |
Power Flow | Full Load without TAB | Full Load with TAB | Half Load with TAB |
---|---|---|---|
P1 | 0 | 5 kW | 2.5 kW |
P2 | 0 | 5 kW | 2.5 kW |
P3 | 0 | 10 kW | 5 kW |
PS1 | 5 kW | 10 kW | 5 kW |
PS2 | 5 kW | 10 kW | 5 kW |
PS3 | 20 kW | 10 kW | 5 kW |
PR1 | 5 kW | 5 kW | 2.5 kW |
PR2 | 5 kW | 5 kW | 2.5 kW |
PR3 | 20 kW | 20 kW | 10 kW |
Component | MTBF (h) | Reliability (%) (within 5 Years) |
---|---|---|
AC utility supply | 99.9999 | |
AC rectifier | 1,960,032 | 97.790126 |
Inverter | 1,817,016 | 97.618276 |
Lead Acid Battery | 1,173,590.3 | 83.318464 |
Switchgear | 446,426.18 | 90.654689 |
System | Reliability (% in 5 Years) | Downtime (Hours) |
---|---|---|
Conventional DC power distribution system | 88.455% | 1011.342 |
Proposed power distribution system | 97.5258% | 216.73992 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Wada, K. Simulation Study of Power Management for a Highly Reliable Distribution System using a Triple Active Bridge Converter in a DC Microgrid. Energies 2018, 11, 3178. https://doi.org/10.3390/en11113178
Yu Y, Wada K. Simulation Study of Power Management for a Highly Reliable Distribution System using a Triple Active Bridge Converter in a DC Microgrid. Energies. 2018; 11(11):3178. https://doi.org/10.3390/en11113178
Chicago/Turabian StyleYu, Yue, and Keiji Wada. 2018. "Simulation Study of Power Management for a Highly Reliable Distribution System using a Triple Active Bridge Converter in a DC Microgrid" Energies 11, no. 11: 3178. https://doi.org/10.3390/en11113178
APA StyleYu, Y., & Wada, K. (2018). Simulation Study of Power Management for a Highly Reliable Distribution System using a Triple Active Bridge Converter in a DC Microgrid. Energies, 11(11), 3178. https://doi.org/10.3390/en11113178