Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes
Abstract
:1. Introduction
2. Silicon Li-Ion Batteries
2.1. Investigated Cells
2.2. Electrical Characterization
2.3. The Influence of Pressure
3. Lifetime Testing Methodology
3.1. Capacity Fade Model Concept
3.2. Testing Procedure
3.3. Cycle Aging Test Campaign
4. Results and Discussion
4.1. Pressure Study
4.2. Capacity Degradation
4.2.1. The Influence of Current Rate
4.2.2. The Influence of Depth of Discharge
4.2.3. The Influence of Temperature
4.2.4. The Influence of Real-Life Driving
4.3. Pressure Evolution over Battery Lifetime
5. Capacity Fade Modeling
5.1. The State of Health-Capacity Throughput Relationship
5.2. Degradation Rate Equation
5.3. Dynamic Model Validation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Si | Silicon |
SEI | Solid Electrolyte Interface |
WLTP | Worldwide harmonized Light vehicle Test Procedure |
QOCV | Quasi-Open Circuit Voltage |
CCCV | Constant Current Constant Voltage |
HPPC | Hybrid Pulse Power Characterization |
BoL | Beginning of Life |
EoL | End of Life |
SoC | State of Charge |
DoD | Depth of Discharge |
SoH | State of Health |
FEC | Fluoroethylene Carbonate |
References
- NOAA National Centers for Environmental Information. State of the Climate: Global Climate Report for Annual 2017; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018.
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Louli, A.J.; Li, J.; Trussler, S.; Fell, C.R.; Dahn, J.R. Volume, Pressure and Thickness Evolution of Li-Ion Pouch Cells with Silicon-Composite Negative Electrodes. J. Electrochem. Soc. 2017, 164, 2689–2696. [Google Scholar] [CrossRef]
- Shen, X.; Tian, Z.; Fan, R.; Shao, L.; Zhang, D.; Cao, G.; Kou, L.; Bai, Y. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem. 2017, 27, 1067–1090. [Google Scholar] [CrossRef]
- Edstr, K.; Jeschull, F.; Lindgren, F.; Lacey, M.J.; Bj, F.; Brandell, D. In fluence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries. J. Power Sour. 2016, 325, 513–524. [Google Scholar] [CrossRef]
- Radvanyi, E.; Havenbergh, K.V.; Porcher, W.; Jouanneau, S.; Bridel, J.s.; Put, S.; Franger, S. Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy. Electrochim. Acta 2014, 137, 751–757. [Google Scholar] [CrossRef]
- Steinhauer, M.; Diemant, T.; Heim, C.; Behm, R.J.; Wagner, N.; Friedrich, K.A. Solid Electrolyte Interphase Formation on Silicon and Lithium Titanate Anodes in Lithium-Ion Batteries. J. Appl. Electrochem. 2017, 47, 249–259. Available online: https://elib.dlr.de/111045/ (accessed on 26 July 2018).
- Wetjen, M.; Pritzl, D.; Jung, R.; Solchenbach, S.; Ghadimi, R.; Gasteiger, H.A. Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2017, 164, 2840–2852. [Google Scholar] [CrossRef]
- Ozanam, F.; Rosso, M. Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B 2016, 213, 2–11. [Google Scholar] [CrossRef]
- Du, Z.; Li, J.; Daniel, C.; Iii, D.L.W. Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density. Electrochim. Acta 2017, 254, 123–129. [Google Scholar] [CrossRef]
- Demirkan, M.T.; Trahey, L.; Karabacak, T. Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J. Power Sour. 2015, 273, 52–61. [Google Scholar] [CrossRef]
- Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem 2015, 2, 1645–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, T. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chem. Mater. 2015, 27, 2591–2599. [Google Scholar] [CrossRef]
- Zuo, X.; Zhu, J.; Müller-buschbaum, P.; Cheng, Y.j. Nano Energy Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Haruta, M.; Okubo, T.; Masuo, Y.; Yoshida, S.; Tomita, A.; Takenaka, T.; Doi, T.; Inaba, M. Temperature effects on SEI formation and cyclability of Si nano flake powder anode in the presence of SEI-forming additives. Electrochim. Acta 2017, 224, 186–193. [Google Scholar] [CrossRef]
- Jung, R.; Metzger, M.; Haering, D.; Solchenbach, S.; Marino, C.; Tsiouvaras, N.; Stinner, C.; Gasteiger, H.A. Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries. J. Electrochem. Soc. 2016, 166. [Google Scholar] [CrossRef]
- Leung, K.; Rempe, S.B.; Foster, M.E.; Ma, Y. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries. J. Electrochem. Soc. 2014, 161, 213–221. [Google Scholar] [CrossRef]
- Dupre, N.; Moreau, P.; Vito, E.D.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Guyomard, D. Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration. Chem. Mater. 2016, 28, 2557–2572. [Google Scholar] [CrossRef] [PubMed]
- Delpuech, N.; Dupre, N.; Moreau, P.; Bridel, J.S. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries. ChemElectroChem 2016, 9, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Chevrier, V.L.; Liu, L.; Wohl, R.; Chandrasoma, A.; Vega, J.A.; Eberman, K.W.; Stegmaier, P.; Figgemeier, E.; Hampshire, N. Design and Testing of Prelithiated Full Cells with High Silicon Content. J. Electrochem. Soc. 2018, 165, 1129–1136. [Google Scholar] [CrossRef]
- Berckmans, G.; De Sutter, L.; Kersys, A.; Kriston, A.; Marinaro, M.; Kasper, M.; Axmann, P.; Smekens, J.; Wohlfahrt-Mehrens, M.; Pfrang, A.; et al. Electrical Characterization and Micro X-ray Computed Tomography Analysis of Next-Generation Silicon Alloy Cells. World Electr. Veh. J. 2018, 9, 43. [Google Scholar] [CrossRef]
- Kierzek, K.; Machnikowski, J. Factors influencing cycle-life of full Li-ion cell built from Si/C composite as anode and conventional cathodic material. Electrochim. Acta 2016, 192, 475–481. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, L.; Qin, Y.; Jansen, A. Calendar and Cycle Life of Lithium-Ion Batteries Containing Silicon Monoxide Anode. J. Electrochem. Soc. 2018, 165, 2179–2183. [Google Scholar] [CrossRef]
- Kalaga, K.; Rodrigues, M.t.F.; Trask, S.E.; Shkrob, I.A.; Abraham, P. Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes. Electrochim. Acta 2018, 280, 221–228. [Google Scholar] [CrossRef]
- Klett, M.; Gilbert, J.A.; Trask, S.E.; Polzin, B.J.; Jansen, A.N.; Dees, D.W.; Abraham, D.P. Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li1.03 (Ni0.5Co0.2Mn0.3) 0.97 O2/Silicon-Graphite Full Cells. J. Electrochem. Soc. 2016, 163, 875–887. [Google Scholar] [CrossRef]
- Marinaro, M.; Yoon, D.H.; Gabrielli, G.; Stegmaier, P.; Schmidt, G.; Chauveau, J.; Figgemeier, E.; Spurk, P.C.; Axmann, P.; Wohlfahrt-mehrens, M. High performance 1.2 Ah Si-alloy/GraphitejLiNi0.5Mn0.3Co0.2O2 prototype Li-ion battery. J. Power Sour. 2017, 357, 188–197. [Google Scholar] [CrossRef]
- Gabrielli, G.; Marinaro, M.; Mancini, M.; Axmann, P.; Wohlfahrt-mehrens, M. A new approach for compensating the irreversible capacity loss of high- A new approach for compensating the irreversible capacity loss of high-energy Si/C j LiNi0.5Mn1.5O4 lithium-ion batteries. J. Power Sour. 2017, 351, 35–44. [Google Scholar] [CrossRef]
- Electrically Propelled Road Vehicles—Test Specification for Lithium-Ion Traction Battery Packs and Systems—Part 1: High-Power Applications. ISO 12405-2. Available online: https://www.iso.org/standard/55854.html (accessed on 15 July 2018).
- Electrically Propelled Road Vehicles—Test Specification for Lithium-Ion Traction Battery Packs and Systems—Part 2: High Energy Application. ISO 12405-1. Available online: https://www.iso.org/standard/51414.html (accessed on 15 July 2018).
- Secondary Lithium-Ion Cells for the Propulsion of Electric Road Vehicles—Part 1: Performance Testing. IEC 62660-1. Available online: https://webstore.iec.ch/publication/7331 (accessed on 15 July 2018).
- Secondary Batteries for the Propulsion of Electric Road Vehicles—Part 2: Dynamic Discharge Performance Test and Dynamic Endurance Test. IEC 61982-2. Available online: https://webstore.iec.ch/publication/20204 (accessed on 15 July 2018).
- Hoog, J.D.; Timmermans, J.M.; Ioan-Stroe, D.; Swierczynski, M.; Jaguemont, J.; Goutam, S.; Omar, N.; Mierlo, J.V.; Bossche, P.V.D. Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation. Appl. Energy 2017, 200, 47–61. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries e A Post-Mortem study. J. Power Sour. 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Jalkanen, K.; Karppinen, J.; Skogström, L.; Laurila, T.; Nisula, M.; Vuorilehto, K. Cycle aging of commercial NMC/graphite pouch cells at different temperatures. Appl. Energy 2015, 154, 160–172. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Hicks-garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-LiFePO4 cells. J. Power Sour. 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Omar, N.; Abdel, M.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.; Bossche, P.V.D.; Coosemans, T. Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model. Appl. Energy 2014, 113, 1575–1585. [Google Scholar] [CrossRef]
- Klett, M.; Gilbert, J.A.; Pupek, K.Z.; Trask, S.E.; Abraham, D.P. Layered Oxide, Graphite and Silicon-Graphite Electrodes for Lithium-Ion Cells: Effect of Electrolyte Composition and Cycling Windows. J. Electrochem. Soc. 2017, 164, 6095–6102. [Google Scholar] [CrossRef]
- Deshpande, R.; Verbrugge, M.; Cheng, Y.t.; Wang, J.; Liu, P. Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics. J. Electrochem. Soc. 2012, 159, 1730–1738. [Google Scholar] [CrossRef]
- Sun, S.; Guan, T.; Shen, B.; Leng, K.; Gao, Y.; Cheng, X. Changes of Degradation Mechanisms of LiFePO4/Graphite Batteries Cycled at Different Ambient Temperatures. Electrochim. Acta 2017, 237, 248–258. [Google Scholar] [CrossRef]
- Leng, F.; Tan, C.M.; Pecht, M. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Sci. Rep. 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. Adv. Energy Mater. 2017, 7, 1–17. [Google Scholar] [CrossRef]
- Sethuraman, V.A.; Winkle, N.V.; Abraham, D.P.; Bower, A.F.; Guduru, P.R. Real-time stress measurements in lithium-ion battery negative-electrodes. J. Power Sour. 2012, 206, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Bucci, G.; Swamy, T.; Bishop, S.; Sheldon, B.W.; Chiang, Y.m.; Carter, W.C. The Effect of Stress on Battery-Electrode Capacity. J. Electrochem. Soc. 2017, 166. [Google Scholar] [CrossRef]
- Cheng, X.; Pecht, M. In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review. Energies 2017, 10, 591. [Google Scholar] [CrossRef]
- Glazier, S.L.; Li, J.; Louli, A.J.; Allen, J.P.; Dahn, J.R. An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure Measurements. J. Electrochem. Soc. 2017, 164, 3545–3555. [Google Scholar] [CrossRef]
- Cannarella, J.; Arnold, C.B. State of health and charge measurements in lithium-ion batteries using mechanical stress. J. Power Sour. 2014, 269, 7–14. [Google Scholar] [CrossRef]
- Dai, H.; Yu, C.; Wei, X.; Sun, Z. State of charge estimation for lithium-ion pouch batteries based on stress measurement. Energy 2017, 129, 16–27. [Google Scholar] [CrossRef]
- Cui, Y.; Du, C.; Yin, G.; Gao, Y.; Zhang, L.; Guan, T. Multi-Stress Factor Model for Cycle Lifetime Prediction of Lithium Ion Batteries with Shallow-Depth Discharge. J. Power Sour. 2015. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
Paper | Cell type | Cathode | Anode | Si Content | Capacity Retention | Capacity | Prelithiated |
---|---|---|---|---|---|---|---|
Kierzek [22] | Coin | NMC532 | Si-C | 18% | 72% at 100 cycles | 50 mAh | no |
Lu [23] | Coin | NMC532-LFO | |||||
Kalaga [24] | Coin | NMC532 | Si-Gr | 15% | 66% at 100 cycles | a | no |
Chevrier [20] | Coin | NMC622 | Si-alloy | 55% | 80% at 500 cycles | 2 Ah | yes |
Coin | NMC622 | Si-alloy | 55% | 80% at 150 cycles | 2 Ah | no | |
Cylindrical | NMC622 | Si-alloy | 30% | 80% at 500 cycles | 2 Ah | yes | |
Klett [25] | Coin | NMC532 | Si-Gr | 15% | 80% at 20 cycles b | a | no |
Delpuech [19] | Coin | LCO | Si | a | 80% at 20 cycles b | a | no |
Dupré [18] | Coin | NMC111 | Si-C | 80% | 80% at 20 cycles b | a | no |
Louli [3] | Pouch | NCA | SiO-Gr | a | a | 260 mAh | no |
Pouch | LCO | Si-Alloy | a | 86% at 90 cycles | 230 mAh | no | |
Pouch | NCA | Si-C | a | 93% at 90 cycles | 165 mAh | no | |
Marinaro [26] | Pouch | NMC532 | Si-alloy | 55% | 80% at 290 cycles | 1.22 Ah | no |
Gabrielli [27] | Coin | LMNO-O/R | Si-C | 75% | 75% at 100 cycles | a | no |
Properties | Value |
---|---|
Cathode Composition | |
93% | |
Carbon | 4% |
HSV1800 (Arkema) | 3% |
Loading (mg/cm2) | 17.5 |
Electrode density (g/cc) | 3.0 |
Anode Composition | |
Si-alloy (3M) | 55% |
SMG-A3 | 33% |
LiPAA | 10% |
Super-PLi | 2% |
Loading (mg/cm2) | 6.5 |
Electrode density (g/cc) | 1.7 |
Electrical | |
Nominal capacity (mAh) | 1360 |
Upper cut-off voltage (V) | 4.4 |
Lower cut-off voltage (V) | 2.7 |
Specific energy (Wh/kg) | 205 |
DoD | 100% | 80% | 60% | |
---|---|---|---|---|
T | C-rate | |||
10 °C | C/3 | 2 | ||
25 °C | C/3 | 2 | 2 | 2 |
1C | 2 | |||
45 °C | C/3 | 2 |
DoD | 100% | 80% | 60% | |
---|---|---|---|---|
T | C-rate | |||
10 | C/3 | 107/104 | ||
25 | C/3 | 160/159 | 161/159 | 244/a |
1C | 144/142 | |||
45 | C/3 | 39/37 |
Cycling Condition | Linear Fit | |||||
---|---|---|---|---|---|---|
T (C) | DoD (%) | C-Rate (C) | p1 | p2 | R2 | RMSE |
25 | 100 | 1/3 | −1.048 | 100 | 0.995 | 0.494 |
25 | 100 | 1 | −1.351 | 100 | 0.953 | 2.055 |
10 | 100 | 1/3 | −1.481 | 100 | 0.987 | 0.904 |
45 | 100 | 1/3 | −5.248 | 100 | 0.958 | 1.767 |
25 | 80 | 1/3 | −1.016 | 100 | 0.993 | 0.584 |
25 | 60 | 1/3 | −6.576 | 100 | 0.963 | 1.145 |
Cycles (#) | Capacity throughput (Ah) | State of Health (%) | ||
---|---|---|---|---|
Measurement | Prediction | Error | ||
0 | 0.00 | 100.00 | 100.00 | 0.00 |
50 | 49.92 | 97.05 | 97.42 | 0.36 |
100 | 99.84 | 94.58 | 94.83 | 0.26 |
150 | 149.77 | 92.74 | 92.25 | −0.49 |
200 | 199.69 | 90.46 | 89.67 | −0.79 |
250 | 249.61 | 88.82 | 87.09 | −1.73 |
Median | −0.49 | |||
Mean | −0.48 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sutter, L.; Berckmans, G.; Marinaro, M.; Smekens, J.; Firouz, Y.; Wohlfahrt-Mehrens, M.; Van Mierlo, J.; Omar, N. Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes. Energies 2018, 11, 2948. https://doi.org/10.3390/en11112948
De Sutter L, Berckmans G, Marinaro M, Smekens J, Firouz Y, Wohlfahrt-Mehrens M, Van Mierlo J, Omar N. Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes. Energies. 2018; 11(11):2948. https://doi.org/10.3390/en11112948
Chicago/Turabian StyleDe Sutter, Lysander, Gert Berckmans, Mario Marinaro, Jelle Smekens, Yousef Firouz, Margret Wohlfahrt-Mehrens, Joeri Van Mierlo, and Noshin Omar. 2018. "Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes" Energies 11, no. 11: 2948. https://doi.org/10.3390/en11112948
APA StyleDe Sutter, L., Berckmans, G., Marinaro, M., Smekens, J., Firouz, Y., Wohlfahrt-Mehrens, M., Van Mierlo, J., & Omar, N. (2018). Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes. Energies, 11(11), 2948. https://doi.org/10.3390/en11112948