Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts
Abstract
:1. Introduction
1.1. Energy and GHG Emissions
1.2. Renewable Sources and Public Policy to Encourage Distributed Generation
1.3. Solar Energy in Distributed Generation
2. Life-Cycle Assessment of Photovoltaic Solar Power Plants (PSPP)
2.1. LCA Methodology
2.2. System Boundaries
- The energy data embedded in the production of the PVSS and BOS were obtained using the average values available in the literature.
- Real energy generation data of the PSPP in operation for over one year were used.
- All stages of the PVSS production process were carried out in the country where the manufacturing plants are located, in this case, China.
- The combination of photovoltaic module manufacturing, BOS material, and photovoltaic energy production were considered for the system.
- Direct emissions from the manufacturing process of the PV modules and the emissions originated in the energy generation process required for the manufacturing were accounted for.
- Data regarding transport and the recycling process were considered, but the results of these two items were presented separately from the others.
2.3. PVSS Material and Energy Inventory
2.4. Carbon Inventory
2.5. Balance of System (PVSS EPBT and GHG Emission Rate)
- Energy values required in PV systems and their installation structures were obtained from literature, given in MJp/m2;
- Each PSPP area was used in order to calculate the total required primary energy (MJp);
- Electricity values generated by each evaluated PV plant, in kWh, were field collected;
- Values were converted from kWh to MJ;
- EPBT was calculated using Equation (1). The efficiency factor of the electric matrix of the country where the PSPP is installed was used, in order to convert the generated electricity values to primary energy.
- Values were converted from primary energy to electric energy from the total required primary energy of each PSPP (MJp), expressed as MJ;
- Values were convered from MJ to kWh;
- Electrically generated GHG values embedded in the PV system manufacture and installation were calculated. The emission factor of the electric matrix of the country where the PV system was developed was used, expressed as g CO2-eq/kWh (Table 3);
- Estimated GHG values emitted directly from PVSS material procurement and manufacturing were compiled, expressed as g CO2-eq/m2;
- All direct and indirect GHG emissions (steps 3 and 4) were summed, expressed as g CO2-eq;
- GHGe-rates were calculated using Equation (2) and the electricity data generated at each PSPP. The GHGe-rate result was expressed as g CO2-eq/kWh.
- A degradation of 0.5% per year was considered for the projection of the energy generated by the PSPP, in the years following the actual collected data [62].
- The total emissions avoided during the plant lifespans were obtained by multiplying the value of the electricity generated per year (given in MWh) by the emission factor of the projected SIN (given in t CO2/MWh). We considered that the SIN emission factor after 2020 would remain stable at the official value projected for this year by the Brazilian government.
- The emissions generated by the PV systems were obtained by multiplying the electricity consumption built into the panels by the emission factor of the country where the panels were manufactured, adding direct CO2-eq/m2 emissions to this value.
- The return time of the emissions generated in the manufacturing of the systems was calculated using Equation (3).
3. Case Study: Solar Power Plant Generation in NE Brazil
Brazilian Solar Potential
4. Results and Discussion
4.1. PSPP EPBT
4.2. PSPP GHG Emission Rate
4.3. Discussion
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. IPCC Fifth Assessment Report—Climate Change 2013; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- IPCC. IPCC Fifth Assessment Report—Mitigation of Climate Change; IPCC: London, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. IPCC Fifth Assessment Report—Synthesis Report; IPCC: New York, NY, USA, 2014. [Google Scholar]
- Marimuthu, C.; Kirubakaran, V. Carbon pay back period for solar and wind energy project installed in India: A critical review. Renew. Sustain. Energy Rev. 2013, 23, 80–90. [Google Scholar] [CrossRef]
- Stephanie, B. Carbon Footprint of Electricity Generation; Parliamentary Office of Science and Technology: London, UK, 2006. [Google Scholar]
- Peng, J.; Lu, L.; Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Kim, H.C. Photovoltaics: Life-cycle analyses. Sol. Energy 2011, 85, 1609–1628. [Google Scholar] [CrossRef]
- Nishimura, A.; Hayashi, Y.; Tanaka, K.; Hirota, M.; Kato, S.; Ito, M.; Araki, K.; Hu, E.J. Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system. Appl. Energy 2010, 87, 2797–2807. [Google Scholar] [CrossRef]
- Donnelly, C.R.; Carias, A.; Morgenroth, M.; Ali, M.; Bridgeman, A.; Wood, N. An Assessment of the Life Cycle Costs and GHG Emissions for Alternative Generation Technologies. In Proceedings of the 2010 International World Energy Council Conference, Montreal, QC, Canada, 12–16 September 2010; p. 23. [Google Scholar]
- International Energy Agency. IEA Key World Energy Statistics; IEA: Paris, France, 2017. [Google Scholar]
- International Energy Agency. IEA Electricity Overview Electricity Summary; IEA: Paris, France, 2017. [Google Scholar]
- International Energy Agency. IEA CO2 Emissions from Fuel Combustion 2016 Highlights; IEA: Paris, France, 2016. [Google Scholar]
- International Energy Agency. China, People’s Republic of: Electricity and Heat for 2015; IEA: Paris, France, 2015. [Google Scholar]
- EPE. Cartilha EPE—Riomais20. In Conferência para o Clima Rio+20; EPE: Rio de Janeiro, Brazil, 2012; p. 4. [Google Scholar]
- Brasil, Ministério da Ciência, Tecnologia, Inovação e Comunicação (MCTIC). 3a.Comunicação Sobre Mudanças Climáticas; MCTIC: Brasília, Brazil, 2016. [Google Scholar]
- Brasil, Ministério da Ciência, Tecnologia, Inovação e Comunicação (MCTIC). CTIC Estimativas Anuais de Emissões de Gases de Efeito Estufa No Brasil 2 A Edição; MCTIC: Brasília, Brazil, 2014. [Google Scholar]
- EPE. EPE Resenha Energética Brasileira (Exercício 2016); EPE: Brasília, Brazil, 2017. [Google Scholar]
- EPE. EPE PDE2026—Plano Decenal de Energia; EPE: Brasília, Brazil, 2017. [Google Scholar]
- EPE. EPE PNE-Plano Nacional de Energia 2050; EPE: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Dale, A.; Pereira de Lucena, A.; Marriott, J.; Borba, B.; Schaeffer, R.; Bilec, M. Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil. Energies 2013, 6, 3182–3208. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.; Piekarski, C.; de Francisco, A. Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period. Energies 2018, 11, 1412. [Google Scholar] [CrossRef]
- EPE. EPE 2016 Statistical Yearbook of Electricity 2015 Baseline Year; EPE: Brasília, Brazil, 2016. [Google Scholar]
- MCTIC Fatores de Emissão de CO2 do Sistema Interligado Nacional do Brasil. Available online: http://www.mctic.gov.br/mctic/opencms/ciencia/SEPED/clima/index.html (accessed on 27 March 2018).
- MMA Discussões para Implementação da NDC do Brasil. Available online: http://www.mma.gov.br/clima/ndc-do-brasil (accessed on 27 March 2018).
- Costa, C.D.V. Políticas de Promoção de Fontes novas e Renováveis para Geração de Energia Elétrica: Lições da Experiência Européia para o Caso Brasileiro. UFRJ—Universidade Federal do Rio de Janeiro, 2006. Available online: http://antigo.ppe.ufrj.br/ppe/production/tesis/costacv.pdf (accessed on 01 March 2017).
- BRASIL Lei no 10.438 de 26 de Abril de 2002. Available online: http://www.planalto.gov.br/ccivil_03/Leis/2002/L10438.htm (accessed on 27 March 2018).
- BRASIL Lei no 10.848 de 15 de Março de 2004. Available online: http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2004/Lei/L10.848.html (accessed on 25 August 2017).
- Silva, N.F. Da Energias Renováveis na Expansão do Setor Elétrico Brasileiro, 1st ed.; Synergia Editora: Rio de Janeiro, Brazil, 2015; ISBN 9788568483114. [Google Scholar]
- ANEEL. Resolução Normativa n° 482; ANEEL: Brasília, Brazil, 2012.
- ANEEL. Resolução Normativa n° 687; ANEEL: Brasília, Brazil, 2015.
- ANEEL. Nota Técnica n° 0056/2017; ANEEL: Brasília, Brazil, 2017.
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Charron, R.; Athienitis, A. Design and Optimization of Net Zero Energy Solar Homes. Am. Soc. Heat. Refrig. Air-Cond. Eng. 2006, 112, 285–295. [Google Scholar]
- IEA Photovoltaic Power Systems Programme—International Statistics. Available online: http://www.iea-pvps.org/ (accessed on 17 April 2018).
- IRENA Data and Statistics—IRENA Resource. Available online: http://resourceirena.irena.org/gateway/dashboard/?topic=3&subTopic=32 (accessed on 27 March 2018).
- Pereira, O.S. Mecanismos de promoção de fontes renováveis. In 3o Seminário de Inserção de Fontes Renováveis no Planejamento; CBEM: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Azevedo, G. Energia Eólica, Energia Solar e Bioeletricidade: Benefícios e desafios para o Sistema Elétrico Brasileiro. In Inserção de Novas Fontes Renováveis no Planejamento Energético Brasileiro; UFRJ: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sustain. Energy Rev. 2007, 11, 1913–1965. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R. Energia Solar Fotovoltaica-Conceito e Aplicações; Edição Érica: Sâo Paulo, Brazil, 2012; ISBN 978-85-365-0416-2. [Google Scholar]
- ISO. Environmetal Management: Life Cycle Assesment: Priciples and Framework; ISO: Genebra, Switzerland, 1997. [Google Scholar]
- Mann, S.A.; de Wild-Scholten, M.J.; Fthenakis, V.M.; van Sark, W.G.J.H.M.; Sinke, W.C. The energy payback time of advanced crystalline silicon PV modules in 2020: A prospective study. Prog. Photovolt. Res. Appl. 2014, 22, 1180–1194. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Darling, S.B. Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: Life cycle energy and environmental comparative analysis. Sol. Energy 2014, 105, 669–678. [Google Scholar] [CrossRef]
- Nieuwlaar, E.; Alsema, E. Envorimental aspects of PV power systems. In IEA PVPS Task 1 Workshop; IEA: Utrecht, The Netherlands, 1997; pp. 25–27. [Google Scholar]
- Phylipsen, G.J.M.; Alsema, E.A. Environmental Life-Cycle Assessment of Multicrystalline Silicon Solar Cell Modules; Utrecht University: Utrecht, The Netherlands, 1995. [Google Scholar]
- Alsema, E.A.; Frankl, P.; Kato, K. Energy Pay-Back Time of Photovoltaic Energy Systems: Present Status and Prospects; Utrecht University: Utrecht, The Netherlands, 1998; pp. 6–10. [Google Scholar]
- Battisti, R.; Corrado, A. Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology. Energy 2005, 30, 952–967. [Google Scholar] [CrossRef]
- Pacca, S.; Sivaraman, D.; Keoleian, G.A. Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy 2007, 35, 3316–3326. [Google Scholar] [CrossRef]
- Alsema, E.A.; Wild-Scholten, M.J. Reduction of the Environmental Impacts in Crystalline Silicon Module Manufacturing; WIP-Renewable Energies: München, Germany, 2007. [Google Scholar]
- Wild-Scholten, M. Energy payback times of PV modules and systems. In Workshop Photovoltaic; Energy Research Centre of the Netherlands: Köln, Germany, 2009; pp. 26–27. [Google Scholar]
- Alsema, E.; de Wild, M.J. Environmental Impact of Crystalline Silicon Photovoltaic Module Production. MRS Proc. 2005, 895, 0895-G03-05. [Google Scholar] [CrossRef]
- Frankl, P.; Masini, A.; Gamberalet, M.; Toccacelift, D.; Toccacelit, D. Simplified life-cycle analysis of pv systems in buildings: Present situation and future trends. Prog. Photovolt. Res. Appl. 1997, 6, 137–146. [Google Scholar] [CrossRef]
- Alsema, E.; Nieuwlaar, E. Energy viability of photovoltaic systems. Energy Policy 2000, 28, 999–1010. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H.C. Energy Use and Greenhouse Gas Emissions in the Life Cycle of CdTe Photovoltaics. In Symposium G—Life-Cycle Analysis Tools for “Green” Materials and Process Selection; Cambridge University Press: Cambridge, UK, 2005; Volume 895, p. 0895-G03-06. [Google Scholar]
- EIA. Annual Energy Review 2003; EIA: Washington, DC, USA, 2003.
- Alsema, E.A.; De Wild-Scholten, M.J. Environmental Impacts of Crystalline Silicon Photovoltaic Module Production. In Proceedings of the Conference on Life Cycle Engineering, Leuven, Belguim, 31 May–2 June 2006. [Google Scholar]
- Raugei, M.; Bargigli, S.; Ulgiati, S. Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy 2007, 32, 1310–1318. [Google Scholar] [CrossRef]
- Rupp, R.F.; Lamberts, R. Relatório: Fatores de Conversão de Energia Elétrica e Térmica em Energia Primária e em Emissões de Dióxido de Carbono a Serem Usados na Etiquetagem de Nível de Eficiência Energética de Edificações; UFSC: Florianópolis, Brazil, 2017. [Google Scholar]
- Alsema, E. Energy requirements of thin-film solar cell modules—A review. Renew. Sustain. Energy Rev. 1998, 2, 387–415. [Google Scholar] [CrossRef]
- Leccisi, E.; Raugei, M.; Fthenakis, V. The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update. Energies 2016, 9, 622. [Google Scholar] [CrossRef]
- Kommalapati, R.; Kadiyala, A.; Shahriar, M.; Huque, Z. Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems. Energies 2017, 10, 350. [Google Scholar] [CrossRef]
- Ardente, F.; Beccali, G.; Cellura, M.; Lo Brano, V. Life cycle assessment of a solar thermal collector: Sensitivity analysis, energy and environmental balances. Renew. Energy 2005, 30, 109–130. [Google Scholar] [CrossRef]
- Ito, M.; Kudo, M.; Nagura, M.; Kurokawa, K. A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega-solar plant. Prog. Photovolt. Res. Appl. 2011, 19, 878–886. [Google Scholar] [CrossRef]
- Tiba, C. Banco de Dados Terrestres: Atlas Solarimétrico do Brasil; UFPE: Recife, Brazil, 2000. [Google Scholar]
- Pereira, E. Atlas_Brasileiro_Energia_Solar_2a_Edicao; INPE: São José dos Campos, Brazil, 2017. [Google Scholar]
- National Renewable Energy Laboratory Global Solar Atlas. Available online: http://globalsolaratlas.info/ (accessed on 4 April 2018).
- LABREN—Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia. Atlas Solar. Available online: http://ftp.cptec.inpe.br/labren/publ/livros/Atlas_Brasileiro_Energia_Solar_2a_Edicao.pdf (accessed on 27 June 2018).
- LABREN—Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia. Base de Dados. Available online: http://ftp.cptec.inpe.br/labren/publ/livros/atlas_2017/GLOBAL_HORIZONTAL.zip (accessed on 27 June 2018).
- Alsema, E.A. Energy pay-back time and CO2 emissions of PV systems. Prog. Photovolt. Res. Appl. 2000, 8, 17–25. [Google Scholar] [CrossRef]
- Breyer, C.; Koskinen, O.; Blechinger, P. Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems. Renew. Sustain. Energy Rev. 2015. [Google Scholar] [CrossRef]
- Hondo, H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 2005, 30, 2042–2056. [Google Scholar] [CrossRef]
- Fthenakis, V.; Alsema, E. Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–early 2005 status. Prog. Photovolt. Res. Appl. 2006, 14, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M. Life-Cycle Energy Balance and Greenhouse Gas Emissions of Nuclear Energy in Australia; University of Sydney: Sydney, Australia, 2008. [Google Scholar]
- Stoppato, A. Life cycle assessment of photovoltaic electricity generation. Energy 2008, 33, 224–232. [Google Scholar] [CrossRef]
- Ito, M.; Komoto, K.; Kurokawa, K. Life-cycle analyses of very-large scale PV systems using six types of PV modules. Curr. Appl. Phys. 2010, 10, S271–S273. [Google Scholar] [CrossRef]
- (Mariska) de Wild-Scholten, M.J. Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells 2013, 119, 296–305. [Google Scholar] [CrossRef]
- Pehnt, M.; Bubenzer, A.; Räuber, A. Life Cycle Assessment of Photovoltaic Systems—Trying to Fight Deep-Seated Prejudices. In Photovoltaics Guidebook for Decision-Makers; Springer: Berlin/Heidelberg, Germany, 2003; pp. 179–213. [Google Scholar]
- Hou, G.; Sun, H.; Jiang, Z.; Pan, Z.; Wang, Y.; Zhang, X.; Zhao, Y.; Yao, Q. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Appl. Energy 2016, 164, 882–890. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, W.; Xie, K.; Lv, G.; Chen, Z.; Wu, J.; Yu, J. Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China. Appl. Energy 2017, 185, 68–81. [Google Scholar] [CrossRef]
Authors | Year | Si Feedstock | Casting, Cutting, Wafer Process | Cell Production Process | Module Assembly | Frame | Others | Total |
---|---|---|---|---|---|---|---|---|
(MJp/m2) | (MJp/m2) | (MJp/m2) | (MJp/m2) | (MJp/m2) | (MJp/m2) | (MJp/m2) | ||
Battisti and Corrado [46] | 2005 | 3904 | 535 | 115 | 556 | 40 | 5150 | |
Alsema and Wild-Scholten [50] | 2005 | 1759 | 1078 | 473 | 276 | 236 | 118 | 3940 |
Pacca and Silvaraman [47] | 2007 | 1075 | 0 | 3247 | 0 | 0 | 4322 | |
Alsema and Wild-Scholten [48] | 2007 | 1400 | 550 | 400 | 500 | 270 | 0 | 3120 |
Wild-Scholten [49] | 2009 | 1110 | 744 | 378 | 467 | Frameless | 0 | 2699 |
Yue et al. [42] | 2014 | 3010 |
Authors | Year | Array Support + Cabling | Inverter | Transportation | Installation | Kind of Mounting |
---|---|---|---|---|---|---|
(MJp/m2) | (MJp/kWp) | (MJp/m2) | (MJp/m2) | |||
Alsema and Frankl [45] | 1997 | 1800 a | 0.5 | Ground-mounted | ||
Frankl et al. [50] | 1998 | 1800 | Ground-mounted | |||
Alsema and Frankl [45] | 1997 | 500 | 0.5 | Rooftop | ||
Frankl et al. [50] | 1998 | 600 | Rooftop | |||
Alsema and Nieuwlaar [51] | 2000 | 500 b | Rooftop | |||
Alsema and Wild-Scholten [49] | 2005 | 1930 | ||||
Alsema and Wild-Scholten [48] | 2007 | 1300 | ||||
Pacca and Silvaraman [47] | 2007 | 503 | 134 | 34 |
Country | IPCC a | IEA b | MCTIC c | Average |
---|---|---|---|---|
Brazil | 87 | 88 | 87 | 87.33 |
China | 1049 | 772 | 910.50 |
Country | Average | Minimum (kWh/m2·day) | Maximum | Area (×103 km2) |
---|---|---|---|---|
Germany | 2.95 | 2.47 | 3.42 | 357.02 |
France | 3.49 | 2.47 | 4.52 | 543.97 |
Spain | 4.18 | 3.29 | 5.07 | 504.97 |
Brazil | 5.50 | 4.25 | 6.75 | 8515.77 |
N | NE | NW | SE | S | Average |
---|---|---|---|---|---|
4825 | 5483 | 5082 | 4951 | 4444 | 5153 |
Specifications | PSPP 1 | PSPP 2 | PSPP 3 | PSPP 4 | PSPP 5 | PSPP 6 | PSPP 7 | PSPP 8 | PSPP 9 | PSPP 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 Location | ||||||||||
City | Natal | Ceará Mirim | São Paulo Potengi | Canguaretama | Currais Novos | S.Gonçalo do Amarant | Natal | Pau dos Ferros | Caicó | João Câmara |
Latitude | 5°55′ | 5°65′ | 5°89′ | 6°36′ | 6°25′ | 5°72′ | 5°48′ | 6°15′ | 6°45′ | 5°54′ |
Longitude | 35°20′ | 35°42′ | 35°75′ | 35°16′ | 36°53′ | 35°24′ | 35°12′ | 38°20′ | 37°07′ | 35°80′ |
Annual irradiation (kWh/m2·year) | 1925.54 | 1931.61 | 1927.99 | 1881.72 | 2013.57 | 1924.45 | 1925.54 | 2039.17 | 2060.33 | 1940.94 |
2 Area for PV plant | ||||||||||
Area (m2) | 346 | 692 | 692 | 692 | 692 | 331 | 1.188 | 634 | 634 | 634 |
3 PSPP | ||||||||||
Output (kWp) | 56.40 | 112.80 | 112.80 | 112.80 | 112.80 | 56.35 | 197.32 | 114.00 | 114.00 | 114.00 |
N. of modules | 240 | 480 | 480 | 480 | 480 | 230 | 480 + 345 | 440 | 440 | 440 |
Power of each module (Wp) | 235 | 235 | 235 | 235 | 235 | 245 | 235/245 | 260 | 260 | 260 |
Supplier | Yingli Solar (made in China) | Canadian Solar (made in China) | ||||||||
4 Details of a PSPP module | ||||||||||
PV module type | Multi-crystalline Si | |||||||||
Length with frame (m) | 1.642 | 1.642 | 1.642 | 1.642 | 1.642 | 1.642 | 1.642 | 1.638 | 1.638 | 1.638 |
Width with frame (m) | 0.992 | 0.992 | 0.992 | 0.992 | 0.992 | 0.992 | 0.992 | 0.982 | 0.982 | 0.982 |
Thickness (m) | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.04 | 0.04 | 0.04 |
Weight of module (kg) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 18 | 18 | 18 |
Efficiency (%) | 14.4 | 16.6 | ||||||||
Rated current (A) | 8.05 | 8.05 | 8.05 | 8.05 | 8.05 | 8.05 | 8.05 | 8.6 | 8.6 | 8.6 |
Rated voltage (V) | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 | 29.2 | 30.4 | 30.4 | 30.4 |
Short-circuit current (A) | 8.47 | 8.47 | 8.47 | 8.47 | 8.47 | 8.47 | 8.47 | 9.1 | 9.1 | 9.1 |
Open-circuit voltage (V) | 36.8 | 36.8 | 36.8 | 36.8 | 36.8 | 36.8 | 36.8 | 37.5 | 37.5 | 37.5 |
5 Mounting arrangement | ||||||||||
Mounting | Fixed | |||||||||
Kind of Mounting | Rooftop | Ground-mounted | Rooftop | Ground-mounted (Parking) | ||||||
Surface azimuth angle of PV module | 7° (N) | 7° (N) | 7° (N) | 10° (N) | 10° (N) | 7° (N) | 12° (NO); 12° (SE) | 5° (NO); 5° (SO); 5° (NE); 5° (S) | 7° (NE) | 10° (NE) |
Tilt angle (slope) of PV module | 24° (NE) | 8° (NE) | 50° (NE) | 24° (NO) | 0° | 0° | 70°; 110° | 23°; 157°; 2°; 178° | 27° | 15° |
6 Inverter | ||||||||||
Number of units | 10 | 20 | 20 | 20 | 20 | 10 | 20/15 | 4 | 4 | 4 |
Rated capacity (kW) | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 5 | 4.4/5 | 25 | 25 | 25 |
Frequency (Hz) | 60 | |||||||||
Efficiency | 97.30% | 98.30% | ||||||||
7 Grid connection details | ||||||||||
Electrical parameters for interconnection | 380 V/60 Hz | |||||||||
8 Annual energy generation | ||||||||||
Annual Energy (MWh) | 78.56 | 151.95 | 155.9 | 139.42 | 156.35 | 85.56 | 298.45 | 176.29 | 165.85 | 170.02 |
Annual Energy productivity (kWh/kWp) | 1393 | 1347 | 1382 | 1236 | 1386 | 1518 | 1513 | 1546 | 1455 | 1491 |
9 Cost | ||||||||||
Cost (US$) a | 148,746 | 297,492 | 297,492 | 297,492 | 303,088 | 165,116 | 565,725 | 320,552 | 321,078 | 321,078 |
Cost per kWp (US$/kWp) | 2637 | 2637 | 2637 | 2637 | 2687 | 2930 | 2867 | 2812 | 2816 | 2816 |
10 Cost of energy generation | ||||||||||
Levelised tariff (US$/kWh) b | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Cost of generation (US$/kWh) b | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.07 |
Start operation | 12/2013 | 3/2014 | 4/2014 | 02/2015 | 5/2015 | 11/2015 | 1/2016 | 6/2016 | 8/2016 | 9/2016 |
PSPP | Primary Energy | ||
---|---|---|---|
Required (GJp) | Generated (GJp) | Payback Time (Years) | |
1 | 1600.59 | 452.49 | 3.54 |
2 | 3201.18 | 875.21 | 3.66 |
3 | 3201.18 | 897.99 | 3.56 |
4 | 4140.06 | 811.97 | 5.16 |
5 | 4140.06 | 900.56 | 4.6 |
6 | 1993.53 | 492.85 | 4.04 |
7 | 5531.58 | 1,719.07 | 3.22 |
8 | 2958.47 | 1,015.45 | 2.91 |
9 | 3819.11 | 955.27 | 4.00 |
10 | 3819.11 | 979.32 | 3.9 |
PSPP | Emissions | GHG e-rate | ||||
---|---|---|---|---|---|---|
Avoided | Generated | Payback Time | Photovoltaics | SIN 2016 | SIN 2020 | |
(t CO2-eq) | (t CO2-eq) | (years) | (g CO2-eq/kWh) | |||
1 | 126.26 | 139.27 | 27.58 | 70.91 | 81.7 | 63.9 |
2 | 244.22 | 278.54 | 28.51 | 73.33 | ||
3 | 250.57 | 278.54 | 27.79 | 71.47 | ||
4 | 226.57 | 285.53 | 31.51 | 81.02 | ||
5 | 251.29 | 285.53 | 28.41 | 73.05 | ||
6 | 137.52 | 137.62 | 25.02 | 64.34 | ||
7 | 479.69 | 481.19 | 25.08 | 64.49 | ||
8 | 283.35 | 257.32 | 22.7 | 58.38 | ||
9 | 266.56 | 263.72 | 24.73 | 63.61 | ||
10 | 273.27 | 263.72 | 24.13 | 62.05 |
Year | Reference | Solar Irradiation (kW/m²/year) | Module Efficiency (%) | Performance Ratio | Life Time of System (years) | EPBT (years) | GHG Emission Rate (g CO2-eq/kWh) | Mounting Type | Region | Remark |
---|---|---|---|---|---|---|---|---|---|---|
2000 | [68] | 1700 | 15 | 0.75 | 30 | 3.2 | 60 | Gr. Mounted | Western Europe | |
2002 | [76] | 1700 | 13.4 | 0.85 | 25 | 57 | Rooftop Rooftop | North Africa | ||
2005 | [70] | 1314 | 14 | 0.77 | 30 | N/A | 53 | Rooftop | Japan | |
2006 | [71] | 1700 | 13.2 | 0.75 | 30 | 1.9 | 36 | Rooftop | Europe | |
2006 | [72] | 2060 | 13 | 0.85 | 25 | 106 | Rooftop | Australia | ||
2008 | [73] | 1697 | 16 | 0.83 | 28 | 3.5 | 20 | Gr. Mounted | Turkey | |
2009 | [74] | 1117 | 13.2 | 0.75 | 30 | 2.9 | 62 | Rooftop | Switzerland | |
2013 | [75] | 1700 | 14.1 | 0.75 | 30 | 1.2 | 27.2 | Rooftop | Southern Europe | |
2014 | [42] | 1700 | 13.2 | 0.75 | 30 | 2.3 | 31.8 | Europe | Made in Europe | |
2014 | [42] | 1700 | 13.2 | 0.75 | 30 | 1.6 | 69.2 | Europe | Made in China | |
2015 | [69] | 1222 | 0.82 | 30 | 55 | Rooftop | Germany | Made in Europe | ||
2015 | [69] | 2100 | 0.8 | 30 | 53 | Rooftop | Turkey | Made in China | ||
2014 | [77] | 1600 | 15 | 0.75 | 25 | 60.1–87.3 | China | Made in China | ||
2017 | This study | 1925 | 14.4 | 25 | 3.54 | 70.91 | Rooftop | Northeast Brazil | Made in China | |
1932 | 14.4 | 25 | 3.66 | 73.33 | Rooftop Rooftop | |||||
1928 | 14.4 | 25 | 3.56 | 71.47 | Rooftop | |||||
1881 | 14.4 | 25 | 5.16 | 81.92 | Gr. Mounted | |||||
2013 | 14.4 | 25 | 4.6 | 73.05 | Gr. Mounted | |||||
1924 | 14.4 | 25 | 4.04 | 64.34 | Rooftop | |||||
1925 | 14.4 | 25 | 3.22 | 64.49 | Rooftop | |||||
2039 | 16.16 | 25 | 2.91 | 58.38 | Rooftop | |||||
2060 | 16.16 | 25 | 4 | 63.61 | Gr. Mounted a | |||||
1940 | 16.16 | 25 | 3.9 | 62.05 | Gr. Mounted a |
Parameters | Supposed Value | GHGe-Rate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(g CO2-eq/kWh) | |||||||||||
PSPP 1 | PSPP 2 | PSPP 3 | PSPP 4 | PSPP 5 | PSPP 6 | PSPP 7 | PSPP 8 | PSPP 9 | PSPP 10 | ||
Required energy for manufacturing (MJ/m2) | |||||||||||
(+5%) | 3589.11 | 73.73 | 76.24 | 74.30 | 85.09 | 75.88 | 66.81 | 67.04 | 60.68 | 66.05 | 64.43 |
(−5%) | 3247.29 | 68.10 | 70.42 | 68.63 | 78.75 | 70.22 | 61.86 | 61.95 | 56.09 | 61.16 | 59.66 |
Lifetime of PV system (years) | |||||||||||
20 | 87.56 | 90.54 | 88.24 | 101.14 | 90.20 | 79.44 | 79.63 | 72.09 | 78.54 | 76.61 | |
30 | 59.82 | 61.86 | 60.29 | 69.10 | 61.63 | 54.27 | 54.41 | 49.25 | 53.66 | 52.34 | |
Generated energy (MWh) | |||||||||||
(−5%) | 74.65 | 77.19 | 75.23 | 86.23 | 76.89 | 67.72 | 67.89 | 61.46 | 66.95 | 65.31 | |
(+5%) | 67.54 | 69.84 | 68.06 | 78.02 | 69.57 | 61.27 | 61.42 | 55.60 | 60.58 | 59.09 | |
GHG emission of national grid (g CO2-eq/kWh) | |||||||||||
Made in China | |||||||||||
(+5%) | 956 | 73.84 | 76.35 | 74.42 | 85.22 | 75.99 | 66.93 | 67.16 | 60.80 | 66.17 | 64.55 |
(−5%) | 865 | 67.99 | 70.30 | 68.52 | 78.62 | 70.11 | 61.74 | 61.83 | 55.97 | 61.04 | 59.54 |
(−10%) | 819 | 65.06 | 67.27 | 65.57 | 75.32 | 67.17 | 59.15 | 59.16 | 53.56 | 58.47 | 57.04 |
Made in Brazil | |||||||||||
82 | 17.63 | 18.23 | 17.77 | 21.87 | 19.51 | 17.11 | 15.98 | 14.44 | 16.90 | 16.48 | |
Made in Canada | |||||||||||
200 | 24.92 | 25.77 | 25.11 | 30.09 | 26.83 | 23.57 | 22.62 | 20.46 | 23.29 | 22.72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantino, G.; Freitas, M.; Fidelis, N.; Pereira, M.G. Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts. Energies 2018, 11, 2806. https://doi.org/10.3390/en11102806
Constantino G, Freitas M, Fidelis N, Pereira MG. Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts. Energies. 2018; 11(10):2806. https://doi.org/10.3390/en11102806
Chicago/Turabian StyleConstantino, Gabriel, Marcos Freitas, Neilton Fidelis, and Marcio Giannini Pereira. 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts" Energies 11, no. 10: 2806. https://doi.org/10.3390/en11102806
APA StyleConstantino, G., Freitas, M., Fidelis, N., & Pereira, M. G. (2018). Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts. Energies, 11(10), 2806. https://doi.org/10.3390/en11102806