The Influence of Temperature on the Expansion of a Hard Coal-Gas System
Abstract
:1. Introduction
2. Research Material
3. Apparatus
4. Experiment Procedures
5. Analysis of Results
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Zarębska, K.; Dudzińska, A. The possibility of CO2 storage in coal beds-Verification of experimental data. Gospod. Surowcami Miner. Resour. Manag. 2008, 24, 347–355. [Google Scholar]
- Vishal, V.; Sudhakaran, A.; Tiwari, A.K.; Pradhan, S.P.; Singh, T.N. A Review Summary on Multiple Aspects of Coal Seam Sequestration. In Geologic Carbon Sequestration; Springer International Publishing: Cham, Switzerland, 2016; pp. 161–182. [Google Scholar]
- Santarosa, C.S.; Crandall, D.; Haljasmaa, I.V.; Hur, T.B.; Fazio, J.J.; Warzinski, R.P.; Heemann, R.; Ketzer, J.M.M.; Romanov, V.N. CO2 sequestration potential of Charqueadas coal field in Brazil. Int. J. Coal Geol. 2013, 106, 25–34. [Google Scholar] [CrossRef]
- Baran, P.; Cygankiewicz, J.; Zarȩbska, K. Carbon dioxide sorption on polish ortholignite coal in low and elevated pressure. J. CO2 Util. 2013, 3–4, 44–48. [Google Scholar] [CrossRef]
- Vishal, V.; Singh, T.N.; Ranjith, P.G. Influence of sorption time in CO2-ECBM process in Indian coals using coupled numerical simulation. Fuel 2015, 139, 51–58. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Ceglarska-Stefańska, G.; Zarebska, K. Sorption of carbon dioxide-methane mixtures. Int. J. Coal Geol. 2005, 62, 211–222. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel 1999, 78, 1333–1344. [Google Scholar] [CrossRef]
- Dutka, B.; Kudasik, M.; Topolnicki, J. Pore pressure changes accompanying exchange sorption of CO2/CH4 in a coal briquette. Fuel Process. Technol. 2012, 100, 30–34. [Google Scholar] [CrossRef]
- Kudasik, M.; Skoczylas, N.; Pajdak, A. The Repeatability of Sorption Processes Occurring in the Coal-Methane System during Multiple Measurement Series. Energies 2017, 10, 661. [Google Scholar][Green Version]
- Czapliński, A.; Hołda, S. Changes in mechanical properties of coal due to sorption of carbon dioxide vapour. Fuel 1982, 61, 1281–1282. [Google Scholar] [CrossRef]
- Ceglarska-Stefańska, G.; Zarębska, K. The competitive sorption of CO2 and CH4 with regard to the release of methane from coal. Fuel Process. Technol. 2002, 77–78, 423–429. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, J.; Wei, M.; Pan, Z.; Connell, L.D. Why coal permeability changes under free swellings: New insights. Int. J. Coal Geol. 2014, 133. [Google Scholar] [CrossRef]
- Robertson, E.P.; Christiansen, R.L. Modeling Permeability in Coal Using Sorption-Induced Strain Data. In Proceedings of the 2005 SPE Annual Conference and Technical Exhibition, Dallas, TX, USA, 9–12 October 2005. [Google Scholar] [CrossRef]
- St. George, J.; Barakat, M. The change in effective stress associated with shrinkage from gas desorption in coal. Int. J. Coal Geol. 2001, 45, 105–113. [Google Scholar] [CrossRef]
- Czerw, K. Methane and carbon dioxide sorption/desorption on bituminous coal—Experiments on cubicoid sample cut from the primal coal lump. Int. J. Coal Geol. 2011, 85, 72–77. [Google Scholar] [CrossRef]
- Czerw, K.; Zarębska, K.; Buczek, B.; Baran, P. Kinetic models assessment for swelling of coal induced by methane and carbon dioxide sorption. Adsorption 2016, 22, 791–799. [Google Scholar] [CrossRef][Green Version]
- Majewska, Z.; Ceglarska-Stefańska, G.; Majewski, S.; Ziętek, J. Binary gas sorption/desorption experiments on a bituminous coal: Simultaneous measurements on sorption kinetics, volumetric strain and acoustic emission. Int. J. Coal Geol. 2009, 77, 90–102. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 2007, 69, 243–252. [Google Scholar] [CrossRef]
- Zarębska, K.; Ceglarska-Stefańska, G. The change in effective stress associated with swelling during carbon dioxide sequestration on natural gas recovery. Int. J. Coal Geol. 2008, 74, 167–174. [Google Scholar] [CrossRef]
- Baran, P.; Zarębska, K.; Bukowska, M. Expansion of hard coal accompanying the sorption of methane and carbon dioxide in isothermal and non-isothermal processes. Energy Fuels 2015, 29, 1899–1904. [Google Scholar] [CrossRef]
- Dudzińska, A.; Howaniec, N.; Smoliński, A. Effect of Coal Grain Size on Sorption Capacity with Respect to Propylene and Acetylene. Energies 2017, 10, 1919. [Google Scholar] [CrossRef]
- Wierzbicki, M. An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide. Arch. Min. Sci. 2017, 62, 483–494. [Google Scholar] [CrossRef]
- Kudasik, M.; Skoczylas, N.; Sobczyk, J.; Topolnicki, J. Manostat—an accurate gas pressure regulator. Meas. Sci. Technol. 2010, 21, 85402. [Google Scholar] [CrossRef]
- Kanciruk, A. Urządzenia do Pomiarów Wielkości Mechanicznych i Temperatury Przy Użyciu Przetworników Rezystancyjnych i Przykłady ich Zastosowania; Instytut Mechaniki Górotworu PAN: Kraków, Poland, 2009; ISBN 8392997603. [Google Scholar]
- Czerw, K.; Baran, P.; Zarębska, K. Application of the stretched exponential equation to sorption of mine gases and sorption induced swelling of bituminous coal. Int. J. Coal Geol. 2017, 173, 76–83. [Google Scholar] [CrossRef]
- Majewska, Z.; Majewski, S.; Zietek, J. Swelling of coal induced by cyclic sorption/desorption of gas: Experimental observations indicating changes in coal structure due to sorption of CO2 and CH4. Int. J. Coal Geol. 2010, 83, 475–483. [Google Scholar] [CrossRef]
- Niu, Q.; Cao, L.; Sang, S.; Zhou, X.; Wang, Z.; Wu, Z. The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals. Energy 2017, 141, 2206. [Google Scholar] [CrossRef]
- Larsen, J.W. The effects of dissolved CO2 on coal structure and properties. Int. J. Coal Geol. 2004, 57, 63–70. [Google Scholar] [CrossRef]
- Milewska-Duda, J.; Duda, J.; Nodzeñski, A.; Lakatos, J. Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon. Langmuir 2000, 16, 5458–5466. [Google Scholar] [CrossRef]
- Day, S.; Fry, R.; Sakurovs, R. Swelling of Australian coals in supercritical CO2. Int. J. Coal Geol. 2008, 74, 41–52. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Kwiatek, L.M. Physical properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption. Int. J. Coal Geol. 2009, 77, 2–9. [Google Scholar] [CrossRef]
- Ceglarska-Stefańska, G.; Czapliński, A. Correlation between sorption and dilatometric processes in hard coals. Fuel 1993, 72, 413–417. [Google Scholar] [CrossRef]
- Jodłowski, G.S.; Baran, P.; Wójcik, M.; Nodzeński, A.; Porada, S.; Milewska-Duda, J. Sorption of methane and carbon dioxide mixtures in Polish hard coals considered in terms of adsorption-absorption model. Appl. Surf. Sci. 2007, 253, 5732–5735. [Google Scholar] [CrossRef]
- Connell, L.D. A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage. Int. J. Coal Geol. 2016, 162, 169–182. [Google Scholar] [CrossRef]
- Niu, Q.; Cao, L.; Sang, S.; Zhou, X.; Wang, Z. Anisotropic Adsorption Swelling and Permeability Characteristics with Injecting CO2 in Coal. Energy Fuels 2018, 32, 1979–1991. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A workflow to estimate shale gas permeability variations during the production process. Fuel 2018, 220, 879–889. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. Different Flow Behaviors of Low-Pressure and High-Pressure CO2 in Shales. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar]
- Liu, S.; Tang, S.; Yin, S. Coalbed methane recovery from multilateral horizontal wells in Southern Qinshui Basin. Adv. Geo-Energy Res. 2018, 2, 34–42. [Google Scholar] [CrossRef][Green Version]
- Skoczylas, N.; Topolnicki, J. The coal-gas system-The effective diffusion coefficient. Int. J. Oil Gas Coal Technol. 2016, 12, 412. [Google Scholar] [CrossRef]
Sample/Bed | Cdaf [%] | Sdaf [%] | Hdaf [%] | Ndaf [%] | Odaf [%] | Wa [%] | Aa [%] | Vdaf [%] |
---|---|---|---|---|---|---|---|---|
Pn2(404/1) | 84.96 | 0.58 | 4.60 | 1.70 | 3.76 | 0.68 | 3.78 | 25.50 |
Group of Macerals | Vitrinite | Liptinite | Inertinite |
---|---|---|---|
Content [%] | 53 | 8 | 39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran, P.; Czerw, K.; Samojeden, B.; Czuma, N.; Zarębska, K. The Influence of Temperature on the Expansion of a Hard Coal-Gas System. Energies 2018, 11, 2735. https://doi.org/10.3390/en11102735
Baran P, Czerw K, Samojeden B, Czuma N, Zarębska K. The Influence of Temperature on the Expansion of a Hard Coal-Gas System. Energies. 2018; 11(10):2735. https://doi.org/10.3390/en11102735
Chicago/Turabian StyleBaran, Paweł, Katarzyna Czerw, Bogdan Samojeden, Natalia Czuma, and Katarzyna Zarębska. 2018. "The Influence of Temperature on the Expansion of a Hard Coal-Gas System" Energies 11, no. 10: 2735. https://doi.org/10.3390/en11102735