Machine Learning for Wind Turbine Blades Maintenance Management
Abstract
1. Introduction
2. Approach for Delamination, Detection, and Diagnosis in WTB
3. Classification Procedure
3.1. Machine Learning Approach
3.2. Artificial Neuronal Network (ANN): Multilayer Perceptron (MLP)
3.2.1. Training Process
3.2.2. Architecture of the Network
3.3. Classifier Evaluation
- TP: True positive is the real success of the classifier.
- FP: False positive is the sum of the values of a class in the corresponding CM column, excluding the TP.
- FN: False negative is the sum of the values of a class in the corresponding CM row, excluding the TP.
- TN: True negative is the sum of all columns and rows, excluding the column and row of the class.
- Recall, R, known as true positive rate, is the probability of being correctly classified, given by Equation (17).
- Specificity, S, also called the true negative rate, measures the proportion of negatives that are correctly identified, given by Equation (18).
- Precision, P,
- F-score, F,
- Macro average (): , , is obtained by the averaging overall , where M denotes macro average, and i is the scenario. They are calculated for each category, i.e., the values precision is evaluated locally, , and then globally, .
- Micro average (): , and value is obtained as: (i) TPi, FPi, FNi values are calculated for each of the scenarios; (ii) the value of TP, FP, and FN are calculated as the sum of TPi, FPi, FNi; and (iii) applying the equation of the measure that corresponds to it.
4. Case Study
5. Results and Discussion
5.1. Features Selection
5.2. Precision
5.3. Recall
5.4. F-score
5.5. Area under Curve (AUC)
5.6. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- García Márquez, F.P.; Pinar Pérez, J.M.; Pliego Marugán, A.; Papaelias, M. Identification of critical components of wind turbines using FTA over the time. Renew. Energy 2016, 87, 869–883. [Google Scholar] [CrossRef]
- Pliego Marugán, A.; García Márquez, F.P.; Pinar Pérez, J.M. Optimal maintenance management of offshore wind farms. Energies 2016, 9, 46. [Google Scholar] [CrossRef]
- Gómez Muñoz, C.Q.; García Márquez, F.P.; Tomás, J.M.S. Ice detection using thermal infrared radiometry on wind turbine blades. Measurement 2016, 93, 157–163. [Google Scholar] [CrossRef]
- Pinar Pérez, J.M.; García Márquez, F.P.; Hernández, D.R. Economic viability analysis for icing blades detection in wind turbines. J. Clean. Prod. 2016, 135, 1150–1160. [Google Scholar] [CrossRef]
- Pliego Marugán, A.; García Márquez, F.P.; Lev, B. Optimal decision-making via binary decision diagrams for investments under a risky environment. Int. J. Prod. Res. 2017, 1–16. [Google Scholar] [CrossRef]
- Pérez, M.A.; Gil, L.; Oller, S. Impact damage identification in composite laminates using vibration testing. Compos. Struct. 2014, 108, 267–276. [Google Scholar] [CrossRef]
- Pascoe, J.; Alderliesten, R.; Benedictus, R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—A critical review. Eng. Fract. Mech. 2013, 112, 72–96. [Google Scholar] [CrossRef]
- Sohn, H.; Park, G.; Wait, J.R.; Limback, N.P.; Farrar, C.R. Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 2003, 13, 153. [Google Scholar] [CrossRef]
- McGugan, M.; Pereira, G.; Sørensen, B.F.; Toftegaard, H.; Branner, K. Damage tolerance and structural monitoring for wind turbine blades. Philos. Trans. R. Soc. A 2015, 373, 20140077. [Google Scholar] [CrossRef] [PubMed]
- García Márquez, F.P.; Pliego Marugán, A.; Pinar Pérez, J.M.; Hillmansen, S.; Papaelias, M. Optimal dynamic analysis of electrical/electronic components in wind turbines. Energies 2017, 10, 1111. [Google Scholar] [CrossRef]
- García Márquez, F.P.; Muñoz, J.M.C. A pattern recognition and data analysis method for maintenance management. Int. J. Syst. Sci. 2012, 43, 1014–1028. [Google Scholar] [CrossRef]
- García Márquez, F.P. A new method for maintenance management employing principal component analysis. Struct. Durab. Health Monit. 2010, 6, 89–99. [Google Scholar]
- Sohn, H.; Farrar, C.R.; Hunter, N.F.; Worden, K. Structural health monitoring using statistical pattern recognition techniques. J. Dyn. Syst. Meas. Control 2001, 123, 706–711. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Ata, R. Artificial neural networks applications in wind energy systems: A review. Renew. Sustain. Energy Rev. 2015, 49, 534–562. [Google Scholar] [CrossRef]
- Bork, U.; Challis, R. Artificial neural networks applied to lamb wave testing of t-form adhered joints. In Proceedings of the Conference on the Inspection of Structural Composites, London, UK, 9–10 June 1994. [Google Scholar]
- Bork, U.; Challis, R. Non-destructive evaluation of the adhesive fillet size in a t-peel joint using ultrasonic lamb waves and a linear network for data discrimination. Meas. Sci. Technol. 1995, 6, 72. [Google Scholar] [CrossRef]
- Yam, L.; Yan, Y.; Jiang, J. Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Compos. Struct. 2003, 60, 403–412. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Gomez Munoz, C.; De la Hermosa Gonzalez-Carrato, R.; Trapero Arenas, J.; Garcia Marquez, F. A novel approach to fault detection and diagnosis on wind turbines. Glob. NEST J. 2014, 16, 1029–1037. [Google Scholar]
- Gómez Muñoz, C.Q.; García Márquez, F.P. A new fault location approach for acoustic emission techniques in wind turbines. Energies 2016, 9, 40. [Google Scholar] [CrossRef]
- Rose, J.L. Recent advances in guided wave NDE. In Proceedings of the Ultrasonics Symposium, San Francisco, CA, USA, 16–18 October 1995; pp. 761–770. [Google Scholar]
- Rose, J.L. A baseline and vision of ultrasonic guided wave inspection potential. J. Press. Vessel Technol. 2002, 124, 273–282. [Google Scholar] [CrossRef]
- De da González-Carrato, R.R.; Márquez, G.; Pedro, F.; Papaelias, M. Vibration-based tools for the optimisation of large-scale industrial wind turbine devices. Int. J. Cond. Monit. 2016, 6, 33–37. [Google Scholar] [CrossRef]
- Worden, K.; Manson, G. The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2007, 365, 515–537. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.; Jain, S.; Nema, R. Investigations on power quality disturbances using discrete wavelet transform. Int. J. Electr. Electron Comput. Eng. 2013, 2, 47–53. [Google Scholar]
- Farrar, C.R.; Sohn, H.; Worden, K. Data Normalization: A Key for Structural Health Monitoring; Los Alamos National Lab.: Los Alamos, NM, USA, 2001.
- Gómez Muñoz, C.Q.; Jiménez, A.A.; García Márquez, F.P. Wavelet transforms and pattern recognition on ultrasonic guides waves for frozen surface state diagnosis. Renew. Energy 2017. [Google Scholar] [CrossRef]
- Gui, G.; Pan, H.; Lin, Z.; Li, Y.; Yuan, Z. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE J. Civ. Eng. 2017, 21, 523–534. [Google Scholar] [CrossRef]
- Sharma, A.; Amarnath, M.; Kankar, P. Feature extraction and fault severity classification in ball bearings. J. Vib. Control 2016, 22, 176–192. [Google Scholar] [CrossRef]
- Manupati, V.; Anand, R.; Thakkar, J.; Benyoucef, L.; Garsia, F.P.; Tiwari, M. Adaptive production control system for a flexible manufacturing cell using support vector machine-based approach. Int. J. Adv. Manuf. Technol. 2013, 1–13. [Google Scholar] [CrossRef]
- Sohn, H.; Farrar, C.R. Damage diagnosis using time series analysis of vibration signals. Smart Mater. Struct. 2001, 10, 446. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, F. A novel time-domain auto-regressive model for structural damage diagnosis. J. Sound Vib. 2005, 283, 1031–1049. [Google Scholar] [CrossRef]
- Yao, R.; Pakzad, S.N. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mech. Syst. Signal Process. 2012, 31, 355–368. [Google Scholar] [CrossRef]
- Nardi, D.; Lampani, L.; Pasquali, M.; Gaudenzi, P. Detection of low-velocity impact-induced delaminations in composite laminates using auto-regressive models. Compos. Struct. 2016, 151, 108–113. [Google Scholar] [CrossRef]
- Figueiredo, E.; Figueiras, J.; Park, G.; Farrar, C.R.; Worden, K. Influence of the autoregressive model order on damage detection. Comput. Aided Civ. Infrastruct. Eng. 2011, 26, 225–238. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Akaike, H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 1969, 21, 243–247. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Konstantinides, K. Threshold bounds in SVD and a new iterative algorithm for order selection in ar models. IEEE Trans. Signal Process. 1991, 39, 1218–1221. [Google Scholar] [CrossRef]
- Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.-R. Fisher discriminant analysis with kernels. In Proceedings of the Neural Networks for Signal Processing IX 1999, 1999 IEEE Signal Processing Society Workshop, Madison, WI, USA, 25 August 1999; pp. 41–48. [Google Scholar]
- Cunningham, P.; Delany, S.J. K-nearest neighbour classifiers. Mult. Classif. Syst. 2007, 34, 1–17. [Google Scholar]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- García Márquez, F.P.; García-Pardo, I.P. Principal component analysis applied to filtered signals for maintenance management. Qual. Reliab. Eng. Int. 2010, 26, 523–527. [Google Scholar] [CrossRef]
- De la Hermosa González, R.R.; García Márquez, F.P.; Dimlaye, V. Maintenance management of wind turbines structures via mfcs and wavelet transforms. Renew. Sustain. Energy Rev. 2015, 48, 472–482. [Google Scholar] [CrossRef]
- De la Hermosa González, R.R.; García Márquez, F.P.; Dimlaye, V.; Ruiz-Hernández, D. Pattern recognition by wavelet transforms using macro fibre composites transducers. Mech. Syst. Signal Process. 2014, 48, 339–350. [Google Scholar] [CrossRef]
- De Lautour, O.R.; Omenzetter, P. Damage classification and estimation in experimental structures using time series analysis and pattern recognition. Mech. Syst. Signal Process. 2010, 24, 1556–1569. [Google Scholar] [CrossRef]
- Daqrouq, K.; Abu-Isbeih, I.N.; Daoud, O.; Khalaf, E. An investigation of speech enhancement using wavelet filtering method. Int. J. Speech Technol. 2010, 13, 101–115. [Google Scholar] [CrossRef]
- Alfaouri, M.; Daqrouq, K. ECG signal denoising by wavelet transform thresholding. Am. J. Appl. Sci. 2008, 5, 276–281. [Google Scholar] [CrossRef]
- Birgé, L.; Massart, P. From model selection to adaptive estimation. In Festschrift for Lucien Le Cam; Springer: Berlin, Germany, 1997; pp. 55–87. [Google Scholar]
- Ramirez, I.S.; Gómez Muñoz, C.Q.; Marquez, F.P.G. A condition monitoring system for blades of wind turbine maintenance management. In Proceedings of the Tenth International Conference on Management Science and Engineering Management, Baku, Azerbaijan, 30 August–2 September 2016; pp. 3–11. [Google Scholar]
- Castiglioni, P. Levinson–durbin algorithm. In Encyclopedia of Biostatistics; John Wiley and Sons Ltd.: London, UK, 2005. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Wu, W.; Mallet, Y.; Walczak, B.; Penninckx, W.; Massart, D.; Heuerding, S.; Erni, F. Comparison of regularized discriminant analysis linear discriminant analysis and quadratic discriminant analysis applied to NIR data. Anal. Chim. Acta 1996, 329, 257–265. [Google Scholar] [CrossRef]
- Friedman, J.H. Regularized discriminant analysis. J. Am. Stat. Assoc. 1989, 84, 165–175. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Inform. Int. J. Comput. Inform. 2007, 31, 249–268. [Google Scholar]
- Zuo, W.; Zhang, D.; Wang, K. On kernel difference-weighted k-nearest neighbor classification. Pattern Anal. Appl. 2008, 11, 247–257. [Google Scholar] [CrossRef]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Kroese, D.P.; Rubinstein, R.Y.; Cohen, I.; Porotsky, S.; Taimre, T. Cross-entropy method. In Encyclopedia of Operations Research and Management Science; Springer: Berlin, Germany, 2013; pp. 326–333. [Google Scholar]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [Google Scholar] [CrossRef]
- Yang, Y. An evaluation of statistical approaches to text categorization. Inf. Retr. 1999, 1, 69–90. [Google Scholar] [CrossRef]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.Q.; Villegas, M.A.; García, F.P.; Pedregal, D.J. Big data and web intelligence for condition monitoring: A case study on wind turbines. In Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence; IGI Global: Hershey, PA, USA, 2015; pp. 149–163. [Google Scholar]
- Gómez Muñoz, C.Q.; Arcos Jimenez, A.; García Marquez, F.P.; Kogia, M.; Cheng, L.; Mohimi, A.; Papaelias, M. Cracks and welds detection approach in solar receiver tubes employing electromagnetic acoustic transducers. Struct. Heal. Monit. 2017, 1475921717734501. [Google Scholar] [CrossRef]
- Gomez Munoz, C.Q.; Garcia Marquez, F.P.; Jimenez, A.A.; Cheng, L.; Kogia, M.; Mohimi, A.; Papaelias, M. A heuristic method for detecting and locating faults employing electromagnetic acoustic transducers. Eksploatacja I Niezawodnosc—Maint. Reliab. 2017, 19, 493–500. [Google Scholar] [CrossRef]
- Gómez Muñoz, C.Q.; García Marquez, F.P.; Lev, B.; Arcos, A. New pipe notch detection and location method for short distances employing ultrasonic guided waves. Acta Acust. United Acust. 2017, 103, 772–781. [Google Scholar] [CrossRef]









| Level | x (cm) | Delamination Area (cm2) |
|---|---|---|
| 1 | 0 (free of fault) | 0 |
| 2 | 1 | 1 |
| 3 | 2 | 2 |
| 4 | 3 | 3 |
| 5 | 4 | 4 |
| 6 | 5 | 5 |
| Level | DTC | QDA | WKNN | ANN |
|---|---|---|---|---|
| 1 | 0.8267 | 0.5633 | 0.8717 | 0.9262 |
| 2 | 0.8133 | 0.4000 | 0.8550 | 0.8583 |
| 3 | 0.7667 | 0.2850 | 0.8350 | 0.8593 |
| 4 | 0.9200 | 0.9217 | 0.9700 | 0.9089 |
| 5 | 0.9633 | 0.9733 | 0.9983 | 0.9934 |
| 6 | 0.8933 | 0.5917 | 0.9283 | 0.9457 |
| 0.8639 | 0.6225 | 0.9097 | 0.9150 | |
| 0.8639 | 0.6225 | 0.9097 | 0.9150 | |
| Ranking | 1.8700 | 1.3700 | 3.2500 | 3.5000 |
| Position | 3 | 4 | 2 | 1 |
| Level | DTC | QDA | WKNN | ANN |
|---|---|---|---|---|
| 1 | 0.8656 | 0.7161 | 0.9175 | 0.9200 |
| 2 | 0.7428 | 0.5240 | 0.8328 | 0.8783 |
| 3 | 0.8028 | 0.3087 | 0.8254 | 0.8450 |
| 4 | 0.9200 | 0.7238 | 0.9417 | 0.9483 |
| 5 | 0.9666 | 0.6213 | 0.9788 | 0.9983 |
| 6 | 0.8948 | 0.8617 | 0.9653 | 0.9000 |
| 0.8639 | 0.6225 | 0.9097 | 0.9150 | |
| 0.8654 | 0.6259 | 0.9103 | 0.9150 | |
| Ranking | 2.0000 | 1.0000 | 3.1700 | 3.8300 |
| Position | 3 | 4 | 2 | 1 |
| Test | p-Value | α | Comment |
|---|---|---|---|
| 2–4 | 0.0002 | 0.0085 | Reject Ho |
| 2–3 | 0.0003 | 0.0102 | Reject Ho |
| 1–2 | 0.0015 | 0.0127 | Reject Ho |
| 1–4 | 0.4551 | 0.0170 | Fail to Reject Ho |
| 1–3 | 0.4988 | No comparison made | Ho is accepted |
| Level | DTC | QDA | WKNN | ANN |
|---|---|---|---|---|
| 1 | 0.8457 | 0.6306 | 0.8940 | 0.9231 |
| 2 | 0.7765 | 0.4537 | 0.8438 | 0.8682 |
| 3 | 0.7843 | 0.2964 | 0.8302 | 0.8521 |
| 4 | 0.9200 | 0.8109 | 0.9557 | 0.9282 |
| 5 | 0.9649 | 0.7584 | 0.9884 | 0.9958 |
| 6 | 0.8941 | 0.7016 | 0.9465 | 0.9223 |
| 0.8639 | 0.6225 | 0.9097 | 0.9150 | |
| 0.8642 | 0.6086 | 0.9098 | 0.9150 | |
| Ranking | 1.8300 | 1.5000 | 3.3300 | 3.3400 |
| Position | 3 | 4 | 2 | 1 |
| LEVEL | DTC | QDA | WKNN | ANN |
|---|---|---|---|---|
| 1 | 0.9170 | 0.8400 | 0.9480 | 0.9551 |
| 2 | 0.8760 | 0.7590 | 0.9070 | 0.9169 |
| 3 | 0.9030 | 0.6810 | 0.9020 | 0.9142 |
| 4 | 0.9520 | 0.8580 | 0.9680 | 0.9494 |
| 5 | 0.9890 | 0.8100 | 0.9890 | 0.9965 |
| 6 | 0.9510 | 0.9030 | 0.9760 | 0.9630 |
| Ranking | 2.4200 | 1.0000 | 3.0800 | 3.5000 |
| Position | 3 | 4 | 2 | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcos Jiménez, A.; Gómez Muñoz, C.Q.; García Márquez, F.P. Machine Learning for Wind Turbine Blades Maintenance Management. Energies 2018, 11, 13. https://doi.org/10.3390/en11010013
Arcos Jiménez A, Gómez Muñoz CQ, García Márquez FP. Machine Learning for Wind Turbine Blades Maintenance Management. Energies. 2018; 11(1):13. https://doi.org/10.3390/en11010013
Chicago/Turabian StyleArcos Jiménez, Alfredo, Carlos Quiterio Gómez Muñoz, and Fausto Pedro García Márquez. 2018. "Machine Learning for Wind Turbine Blades Maintenance Management" Energies 11, no. 1: 13. https://doi.org/10.3390/en11010013
APA StyleArcos Jiménez, A., Gómez Muñoz, C. Q., & García Márquez, F. P. (2018). Machine Learning for Wind Turbine Blades Maintenance Management. Energies, 11(1), 13. https://doi.org/10.3390/en11010013
