Coordinated Control Schemes of Super-Capacitor and Kinetic Energy of DFIG for System Frequency Support
Abstract
:1. Introduction
2. Conventional Control of DFIG
2.1. Dynamic Model of Induction Generator
2.2. Rotor-Side Converter Control
2.3. Grid-Side Converter Control
2.4. Wind Turbine Model
3. Simultaneous Control of Super-Capacitor and WT Rotor
3.1. Emulated Inertia Control from Super-Capacitor
3.2. Emulated Inertia Control from Rotor Mass of DFIG-Based WT
4. Cascading Control of Super Capacitor and WT Rotor
4.1. Super-Capacitor Activated Only
4.2. Both Super-Capacitor and WT Rotor KE Activated
5. Simulation Studies
5.1. Sudden Load Increase with Same Control Parameters
5.2. Sudden Load Increase with Different Control Parameters
5.3. Sudden Load Decrease with Different Control Parameters
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Ghosh, S.; Kamalasadan, S.; Senroy, N.; Enslin, J. Doubly Fed Induction Generator (DFIG)-Based Wind Farm Control Framework for Primary Frequency and Inertial Response Application. IEEE Trans. Power Syst. 2015, 30, 1861–1871. [Google Scholar] [CrossRef]
- Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans. Power Syst. 2006, 21, 433–434. [Google Scholar] [CrossRef]
- Ye, H.; Pei, W.; Qi, Z. Analytical Modeling of Inertial and Droop Responses from a Wind Farm for Short-Term Frequency Regulation in Power Systems. IEEE Trans. Power Syst. 2015, 30, 3414–3423. [Google Scholar] [CrossRef]
- Yang, L.H.; Xu, Z.; Ostergaard, J.; Dong, Z.Y.; Wong, K.P. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through. IEEE Trans. Power Syst. 2012, 27, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Ekanayake, J.; Jenkins, N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency. IEEE Trans. Energy Convers. 2004, 19, 800–802. [Google Scholar] [CrossRef]
- Ramtharan, G.; Ekanayake, J.B.; Jenkins, N. Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener. 2007, 1, 3–9. [Google Scholar] [CrossRef]
- Conroy, J.F.; Watson, R. Frequency response capability of full converter wind turbine generators in comparison to conventional generation. IEEE Trans. Power Syst. 2008, 23, 649–656. [Google Scholar] [CrossRef]
- Leonhard, W.; Grobe, E.M. Sustainable electrical energy supply with wind and pumped storage—A realistic long-term strategy or utopia. In Proceedings of the IEEE Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; Volume 2, pp. 1221–1225. [Google Scholar]
- Daneshi, A.; Khederzadeh, M.; Sadrmomtazi, N.; Olamaei, J. Integration of wind power and energy storage in SCUC problem. In Proceedings of the World Non-Grid-Connected Wind Power and Energy Conference (WNWEC), Nanjing, China, 5–7 November 2010; pp. 1–8. [Google Scholar]
- Qu, L.; Qiao, W. Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans. Ind. Appl. 2011, 47, 359–367. [Google Scholar] [CrossRef]
- Wang, S.; Hu, J.B.; Yuan, X.M.; Sun, L. On Inertial Dynamics of Virtual-Synchronous-Controlled DFIG-Based Wind Turbines. IEEE Trans. Energy Convers. 2015, 30, 1691–1702. [Google Scholar] [CrossRef]
- Kamel, R.M.; Chaouachi, A.; Nagasaka, K. Three Control Strategies to Improve the Microgrid Transient Dynamic Response during Isolated Mode: A Comparative Study. IEEE Trans. Ind. Electron. 2013, 60, 1314–1322. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Ostergaard, J.; Hill, D.J. Coordinated Control Strategies for Offshore Wind Farm Integration via VSC-HVDC for System Frequency Support. IEEE Trans. Energy Convers. 2017, 32, 843–856. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Meng, K. Optimal Power Sharing Control of Wind Turbines. IEEE Trans. Power Syst. 2017, 32, 824–825. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Wong, K.P. Advanced Control Strategies of PMSG-Based Wind Turbines for System Inertia Support. IEEE Trans. Power Syst. 2017, 32, 3027–3037. [Google Scholar] [CrossRef]
- Xue, Y.C.; Tai, N.L. Review of contribution to frequency control through variable speed wind turbine. Renew. Energy 2011, 36, 1671–1677. [Google Scholar]
- Vyver, J.V.d.; Kooning, J.D.M.D.; Meersman, B.; Vandevelde, L.; Vandoorn, T.L. Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines. IEEE Trans. Power Syst. 2016, 31, 1129–1138. [Google Scholar] [CrossRef]
- Lalor, G.; Mullane, A.; O’Malley, M. Frequency control and wind turbine technologies. IEEE Trans. Power Syst. 2005, 20, 1905–1913. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, J.; Zhang, X.; Xu, L. Control of PMSG-Based Wind Turbines for System Inertial Response and Power Oscillation Damping. IEEE Trans. Sustain. Energy 2015, 6, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Kayikci, M.; Milanovic, J.V. Dynamic Contribution of DFIG-Based Wind Plants to System Frequency Disturbances. IEEE Trans. Power Syst. 2009, 24, 859–867. [Google Scholar] [CrossRef]
- Chang-Chien, L.-R.; Lin, W.-T.; Yin, Y.-C. Enhancing Frequency Response Control by DFIGs in the High Wind Penetrated Power Systems. IEEE Trans. Power Syst. 2011, 26, 710–718. [Google Scholar] [CrossRef]
- De Almeida, R.G.; Lopes, J.A.P. Participation of doubly fed induction wind generators in system frequency regulation. IEEE Trans. Power Syst. 2007, 22, 944–950. [Google Scholar] [CrossRef]
- Uehara, A.; Pratap, A.; Goya, T.; Senjyu, T.; Yona, A.; Urasaki, N. A Coordinated Control Method to Smooth Wind Power Fluctuations of a PMSG-Based WECS. IEEE Trans. Energy Convers. 2011, 26, 550–558. [Google Scholar] [CrossRef]
- Arani, M.F.M.; El-Saadany, E.F. Implementing Virtual Inertia in DFIG-Based Wind Power Generation. IEEE Trans. Power Syst. 2013, 28, 1373–1384. [Google Scholar] [CrossRef]
- Hansen, A.D.; Iov, F.; Sørensen, P.; Cutululis, N.; Jauch, C.; Blaabjerg, F. Dynamic Wind Turbine Models in Power System Simulation Tool DIgSILENT, 2nd ed.; Project Report Risø-R-1400 (EN); Risø National Laboratory, Technical University of Denmark: Copenhagen, Denmark, 2003. [Google Scholar]
- Wu, F.; Zhang, X.P.; Godfrey, K.; Ju, P. Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator. IET Gener. Transm. Distrib. 2007, 5, 751–760. [Google Scholar] [CrossRef]
- Xiong, L.S.; Zhuo, F.; Wang, F.; Liu, X.K.; Chen, Y.; Zhu, M.H.; Yi, H. Static synchronous generator model: A new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM inverter. IEEE Trans. Power Electron. 2016, 31, 6264–6280. [Google Scholar] [CrossRef]
- Padron, J.F.M.; Lorenzo, A.E.F. Calculating Steady-State Operating Conditions for Doubly-Fed Induction Generator Wind Turbines. IEEE Trans. Power Syst. 2010, 25, 922–928. [Google Scholar] [CrossRef]
- Anderson, P.; Fouad, A.A. Power System Control and Stability; Iowa State University Press: Ames, IA, USA, 1977. [Google Scholar]
Symbol | Item | Value |
---|---|---|
Ug | Terminal Voltage | 6.6 kV |
Hg | Inertia Time constant | 4 s |
xd, xd′, xd″ | d-axis synchronous reactance | 2.642, 0.377, 0.21 |
xq, xq″, xl | q-axis synchronous reactance | 2.346, 0.18, 0.18 |
Td′, Td″, Tq″ | SG Time constant | 0.635, 0.015, 0.015 |
RP | Turbine permanent droop | 0.04 |
TR | Governor time constant | 8.405 s |
Tservo | Servo-motor time constant | 0.5 s |
Kgain | Exciter regulator gain | 400 |
Te | Exciter time constant | 0.01 s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Li, Y.; Zhu, Y.; Yang, P.; Xu, Z. Coordinated Control Schemes of Super-Capacitor and Kinetic Energy of DFIG for System Frequency Support. Energies 2018, 11, 103. https://doi.org/10.3390/en11010103
Xiong L, Li Y, Zhu Y, Yang P, Xu Z. Coordinated Control Schemes of Super-Capacitor and Kinetic Energy of DFIG for System Frequency Support. Energies. 2018; 11(1):103. https://doi.org/10.3390/en11010103
Chicago/Turabian StyleXiong, Liansong, Yujun Li, Yixin Zhu, Ping Yang, and Zhirong Xu. 2018. "Coordinated Control Schemes of Super-Capacitor and Kinetic Energy of DFIG for System Frequency Support" Energies 11, no. 1: 103. https://doi.org/10.3390/en11010103
APA StyleXiong, L., Li, Y., Zhu, Y., Yang, P., & Xu, Z. (2018). Coordinated Control Schemes of Super-Capacitor and Kinetic Energy of DFIG for System Frequency Support. Energies, 11(1), 103. https://doi.org/10.3390/en11010103