An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control
Abstract
1. Introduction
2. Conventional Droop Control and Reactive Power Sharing Analysis
3. Improved Droop Control Strategy
4. Distributed Secondary Power Optimization Control Based on a Consensus Algorithm
4.1. Discrete Consensus Algorithm
4.2. Distributed Secondary Power Optimization Control Based on a Discrete Consensus Algorithm
5. Simulation Results
5.1. Case A: Disturbance Analysis
- Stage 1 (0–1 s):
- The conventional droop control shown in Equation (3) is used to control the 3 DGs in Figure 6. Load 1 and Load 2 are connected to the system at t = 0 s.
- Stage 2 (1–2 s):
- The improved droop control shown in Equation (8) is used to control the 3 DGs at t = 1 s.
- Stage 3 (2–3 s):
- The secondary power optimization control is added to the improved Q-E droop control to optimize reactive power and regulate voltage amplitude at t = 2 s.
- Stage 4 (3–4 s):
- Load 3 is connected to the system at t = 3 s.
5.2. Case B: Variations of Line Impedance
5.3. Case C: Influence of Different Convergence Accuracies
5.4. Case D: Influence of Communication Delay
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, H.; Huang, J. Joint Investment and Operation of Microgrid. IEEE Trans. Smart Grid 2017, 8, 833–845. [Google Scholar] [CrossRef]
- Golsorkhi, M.S.; Lu, D.D.C. A control method for inverter-based islanded microgrids based on V-I droop characteristics. IEEE Trans. Power Deliv. 2015, 30, 1196–1204. [Google Scholar] [CrossRef]
- Ahn, C.; Peng, H. Decentralized and real-time power dispatch control for an islanded microgrid supported by distributed power sources. Energies 2013, 6, 6439–6454. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, M.R.; Lehn, P.W. Microgrid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Deliv. 2005, 20, 248–257. [Google Scholar] [CrossRef]
- Yu, Z.; Ai, Q.; He, X.; Piao, L. Adaptive droop control for microgrids based on the synergetic control of multi-agent systems. Energies 2016, 9, 1057. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; Vicuna, L.G.D.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A General Approach Toward Standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
- Bidram, A.; Davoudi, A. Hierarchical structure of microgrids control system. IEEE Trans. Smart Grid 2012, 3, 1963–1976. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Lu, X.; Guerrero, J.M.; Sun, K.; Vasquez, J.C.; Teodorescu, R.; Huang, L. Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid 2014, 5, 683–692. [Google Scholar] [CrossRef]
- Patterson, M.; Macia, N.F.; Kannan, A.M. Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications. IEEE Trans. Energy Convers. 2015, 30, 359–366. [Google Scholar] [CrossRef]
- Dragicevic, T.; Guerrero, J.M.; Vasquez, J.C.; Škrlec, D. Supervisory control of an adaptive-droop regulated dc Microgrid with battery management capability. IEEE Trans. Ind. Electron. 2014, 29, 695–706. [Google Scholar] [CrossRef]
- Egwebe, A.M.; Fazeli, M.; Igic, P.; Holland, P.M. Implementation and stability study of dynamic droop in islanded microgrids. IEEE Trans. Energy Convers. 2016, 31, 821–832. [Google Scholar] [CrossRef]
- Guo, F.; Wen, C.; Mao, J.; Song, Y. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Trans. Ind. Electron. 2015, 62, 4355–4364. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Matas, J.; de Vicuña, L.G. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans. Ind. Electron. 2007, 54, 994–1004. [Google Scholar] [CrossRef]
- Gu, W.; Liu, W.; Wu, Z.; Zhao, B.; Chen, W. Cooperative control to enhance the frequency stability of islanded microgrids with DFIG-SMES. Energies 2013, 6, 3951–3971. [Google Scholar] [CrossRef]
- Tuladhar, A.; Jin, H.; Unger, T.; Mauch, K. Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans. Ind. Appl. 2000, 36, 131–138. [Google Scholar] [CrossRef]
- Li, Y.; Kao, C.-N. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans. Power Electron. 2009, 24, 2977–2988. [Google Scholar]
- Guerrero, J.M.; Vicuna, L.G.D.; Matas, J.; Castilla, M.; Miret, J. Out impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 2005, 52, 1126–1135. [Google Scholar] [CrossRef]
- He, J.; Li, Y. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans. Ind. Appl. 2011, 47, 2525–2538. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuo, F.; Wang, F.; Liu, B.; Gou, R.; Zhao, Y. A virtual impedance optimization method for reactive power sharing in networked microgrid. IEEE Trans. Power Electron. 2016, 31, 2890–2904. [Google Scholar] [CrossRef]
- Majumder, R.; Ledwich, G.; Ghosh, A. Droop control of converter-interfaced microsources in rural distributed generation. IEEE Trans. Power Deliv. 2010, 25, 2768–2778. [Google Scholar] [CrossRef]
- Hajizadeh, A.; Golkar, M.A. Intelligent power management strategy of hybrid distributed generation system. Int. J. Electr. Power Energy Syst. 2007, 29, 783–795. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Wu, Z.; Che, Y.; Guo, L.; Zhang, S.; Liu, Y. A Highly integrated and reconfigurable microgrid testbed with hybrid distributed energy sources. IEEE Trans. Smart Grid 2016, 7, 451–459. [Google Scholar] [CrossRef]
- Yao, W.; Chen, M.; Matas, J.; Guerrero, J.M.; Qian, Z. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Ind. Electron. 2011, 58, 576–588. [Google Scholar] [CrossRef]
- Ahn, S.J.; Nam, S.R.; Choi, J.H.; Moon, S.I. Power scheduling of distributed generators for economic and stable operation of a microgrid. IEEE Trans. Smart Grid 2013, 4, 398–405. [Google Scholar] [CrossRef]
- Shafiee, Q.; Guerrero, J.M.; Vasquez, J.C. Distributed secondary control for islanded microgrids—A novel approach. IEEE Trans. Power Electron. 2014, 29, 1018–1030. [Google Scholar] [CrossRef]
- Nasirian, V.; Davoudi, A.; Lewis, F.L.; Guerrero, J.M. Distributed adaptive droop control for DC distribution systems. IEEE Trans. Energy Convers. 2014, 29, 944–956. [Google Scholar] [CrossRef]
- Zhong, Q. Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 2013, 60, 1281–1290. [Google Scholar] [CrossRef]
- Wu, D.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Secondary coordinated control of islanded microgrids based on consensus algorithms. In Proceedings of the Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 4290–4297. [Google Scholar]
- Vandoorn, T.L.; Kooning, J.D.M.D.; Vyver, J.V.D.; Vandevelde, L. Three-Phase Primary Control for Unbalance Sharing between Distributed Generation Units in a Microgrid. Energies 2013, 6, 6586–6607. [Google Scholar] [CrossRef]
- Mohamed, Y.; El-Saadany, E.F. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electron. 2008, 23, 2806–2816. [Google Scholar] [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary Control Scheme for Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid. IEEE Trans. Smart Grid 2012, 3, 797–807. [Google Scholar] [CrossRef]
- Hou, X.; Sun, Y.; Yuan, W.; Zhong, C. Conventional P-ω/Q-V droop control in highly resistive line of low-voltage converter-based AC microgrid. Energies 2016, 9, 943. [Google Scholar] [CrossRef]
- Hatano, Y.; Mesbahi, M. Agreement over random networks. IEEE Trans. Autom. Control 2005, 50, 1867–1872. [Google Scholar] [CrossRef]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Khoo, S.; Xie, L.; Man, Z. Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems. IEEE/ASME Trans. Mechatron. 2009, 14, 219–228. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, W. Novel multiagent based load restoration algorithm for microgrids. IEEE Trans. Smart Grid 2011, 2, 152–161. [Google Scholar] [CrossRef]
- Zhang, Z.; Chow, M.Y. Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans. Power Syst. 2012, 27, 1761–1768. [Google Scholar] [CrossRef]










| DG | P-f Droop Gain mi,0 (Hz/kW) | Q-E Droop Gain ni,0 (V/kVar) | Rated Active Power Pni,0 (kW) | Rated Reactive Power Qni,0 (kVar) | Load | Values | Line Impedance | Values |
|---|---|---|---|---|---|---|---|---|
| DG1 | 0.0556 | 1.4286 | 9 | 10.5 | Load1/KVA | 9 + j10 | Z1/Ω | 0.2 + j0.031 |
| DG2 | 0.0833 | 2.1429 | 6 | 7 | Load2/KVA | 8.5 + j11 | Z2/Ω | 0.3 + j0.063 |
| Z3/Ω | 0.2 + j0.031 | |||||||
| DG3 | 0.0833 | 2.1429 | 6 | 7 | Load3/KVA | 7 + j7 | Z1-2/Ω | 0.4 + j0.063 |
| Z2-3/Ω | 0.5 + j0.094 |
| Groups | Z1/Ω | Z2/Ω | Z3/Ω | Z1-2/Ω | Z2-3/Ω |
|---|---|---|---|---|---|
| Group 1 | 0.2 + j0.031 | 0.4 + j0.063 | 0.3 + j0.063 | 0.5 + j0.063 | 0.4 + j0.063 |
| Group 2 | 0.2 + j0.031 | 0.4 + j0.063 | 0.3 + j0.031 | 0.5 + j0.063 | 0.4 + j0.063 |
| Group 3 | 0.3 + j0.063 | 0.3 + j0.063 | 0.2 + j0.031 | 0.6 + j0.094 | 0.5 + j0.063 |
| Group 4 | 0.2 + j0.031 | 0.3 + j0.063 | 0.2 + j0.031 | 0.4 + j0.063 | 0.5 + j0.094 |
| Groups | Parameters | DG1 | DG2 | DG3 |
|---|---|---|---|---|
| Group 1 | Reactive Power/kVar | 8.86 | 5.61 | 6.37 |
| Voltage/V | 313.1 | 314 | 313.2 | |
| eQ/% | 4.741 | |||
| Average Voltage Deviation/V | 2.433 | |||
| Group 2 | Reactive Power/kVar | 8.99 | 5.98 | 5.99 |
| Voltage/V | 310.5 | 311.2 | 311.3 | |
| eQ/% | 0.204 | |||
| Average Voltage Deviation/V | 0 | |||
| Group 3 | Reactive Power/kVar | 8.98 | 5.99 | 5.99 |
| Voltage/V | 311.7 | 311.1 | 310.3 | |
| eQ/% | 0.185 | |||
| Average Voltage Deviation/V | 0.033 | |||
| Group 4 | Reactive Power/kVar | 8.99 | 5.98 | 6.00 |
| Voltage/V | 310.7 | 311.4 | 310.9 | |
| eQ/% | 0.148 | |||
| Average Voltage Deviation/V | 0 | |||
| ε | Ei/V | eE/× 10−3 | ||
|---|---|---|---|---|
| DCr1 | DCr2 | DCr3 | ||
| 0.1 | 311.0752 | 311.1621 | 311.1132 | 0.0970 |
| 0.01 | 310.9923 | 311.0126 | 310.9857 | 0.0337 |
| 0.001 | 310.9931 | 310.9951 | 310.9937 | 0.0024 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhao, B.; Wu, Z.; Zhang, X.; Zhang, L. An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control. Energies 2017, 10, 1347. https://doi.org/10.3390/en10091347
Li D, Zhao B, Wu Z, Zhang X, Zhang L. An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control. Energies. 2017; 10(9):1347. https://doi.org/10.3390/en10091347
Chicago/Turabian StyleLi, Demin, Bo Zhao, Zaijun Wu, Xuesong Zhang, and Leiqi Zhang. 2017. "An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control" Energies 10, no. 9: 1347. https://doi.org/10.3390/en10091347
APA StyleLi, D., Zhao, B., Wu, Z., Zhang, X., & Zhang, L. (2017). An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control. Energies, 10(9), 1347. https://doi.org/10.3390/en10091347

