Next Article in Journal
Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods
Previous Article in Journal
Investigation of Hydraulic-Mechanical Properties of Paste Backfill Containing Coal Gangue-Fly Ash and Its Application in an Underground Coal Mine
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessFeature PaperArticle
Energies 2017, 10(9), 1314; https://doi.org/10.3390/en10091314

Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030

MOBI Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
*
Author to whom correspondence should be addressed.
Academic Editor: K.T. Chau
Received: 20 July 2017 / Revised: 22 August 2017 / Accepted: 24 August 2017 / Published: 1 September 2017
(This article belongs to the Section Energy Storage and Application)
Full-Text   |   PDF [3144 KB, uploaded 1 September 2017]   |  

Abstract

The negative impact of the automotive industry on climate change can be tackled by changing from fossil driven vehicles towards battery electric vehicles with no tailpipe emissions. However their adoption mainly depends on the willingness to pay for the extra cost of the traction battery. The goal of this paper is to predict the cost of a battery pack in 2030 when considering two aspects: firstly a decade of research will ensure an improvement in material sciences altering a battery’s chemical composition. Secondly by considering the price erosion due to the production cost optimization, by maturing of the market and by evolving towards to a mass-manufacturing situation. The cost of a lithium Nickel Manganese Cobalt Oxide (NMC) battery (Cathode: NMC 6:2:2 ; Anode: graphite) as well as silicon based lithium-ion battery (Cathode: NMC 6:2:2 ; Anode: silicon alloy), expected to be on the market in 10 years, will be predicted to tackle the first aspect. The second aspect will be considered by combining process-based cost calculations with learning curves, which takes the increasing battery market into account. The 100 dollar/kWh sales barrier will be reached respectively between 2020-2025 for silicon based lithium-ion batteries and 2025–2030 for NMC batteries, which will give a boost to global electric vehicle adoption. View Full-Text
Keywords: process-based cost modeling; NMC battery; silicon lithium-ion battery; market prediction; learning curves process-based cost modeling; NMC battery; silicon lithium-ion battery; market prediction; learning curves
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies 2017, 10, 1314.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top