# Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Considering not only steady-state response but also the dynamical behavior of the system after event occurrence.
- Using polytopic LPV modeling for covering the nonlinearity of the system in transient responses.
- Proposing some new and enhanced indices and comparing them using nonlinear simulations.

## 2. LPV Model for Power System Event Condition

## 3. The Proposed Indices for Event Ranking

#### 3.1. Non-Linear TDS Based Ranking Index

#### 3.2. Modal Based Event Ranking Index

#### 3.3. FR Based Event Ranking Index

## 4. Simulation Results and Evaluation

#### 4.1. Power System Representation

#### 4.2. Nonlinear Simulation of Event Conditions

#### 4.3. Linear Models of Power System for Event Conditions

#### 4.4. Ranking Results

_{0}= 0 s and t

_{1}= 8 s. MP and FREAE which are defined in (13) and (16) respectively, are calculated using full-order polytopic LPV models.

#### 4.5. Discussion of Results

#### 4.6. Ranking Evaluation in Different Conditions

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Pandiarajan, K.; Babulal, C.K. Static security enhancement using fuzzy particle swarm optimization. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
**2016**, 35, 172–186. [Google Scholar] [CrossRef] - El-Kady, M.A.; Alaskar, B.A.; Shaalan, A.M.; Al-Shammri, B.M. Composite Reliability and Quality Assessment of Interconnected Power Systems Interconnected Power Systems. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
**2007**, 26, 7–21. [Google Scholar] [CrossRef] - Matos, M.A. Formal requirements for utility and value functions for security related decisions. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
**2004**, 23, 225–236. [Google Scholar] [CrossRef] - EKWUE, A.O. A Voltage-Based Automatic Contingency Selection Algorithm Via A Linearization Method. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
**1990**, 9, 99–107. [Google Scholar] [CrossRef] - Bharata Reddy, M.J.; Rajesh, D.V.; Mohanta, D.K. Robust transmission line fault classification using wavelet multi-resolution analysis q. Comput. Electr. Eng.
**2013**, 39, 1219–1247. [Google Scholar] [CrossRef] - Ataei, M.; Hooshmand, R.-A.; Parastegari, M. A Wide Range Robust PSS Design Based on Power System Pole-Placement Using Linear Matrix Inequality. J. Electr. Eng.
**2012**, 63, 233–241. [Google Scholar] [CrossRef] - Da Silva, E.F.; Rahmani, M.; Rider, M.J. A Search Space Reduction Strategy and a Mathematical Model for Multistage Transmission Expansion Planning with N-1 Security Constrains. J. Control. Autom. Electr. Syst.
**2014**, 26, 57–67. [Google Scholar] [CrossRef] - Ritonja, J.; Dolinar, D.; Polajžer, B. Adaptive and robust controls for static excitation systems. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
**2015**, 34, 864–881. [Google Scholar] [CrossRef] - Ciapessoni, E.; Cirio, D.; Massucco, S.; Morini, A.; Pitto, A.; Silvestro, F. Risk-Based Dynamic Security Assessment for Power System Operation and Operational Planning. Energies
**2017**, 10, 475. [Google Scholar] [CrossRef] - Tang, L. Dynamic Security Assessment Processing System. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2014. [Google Scholar]
- Baone, C.A.; Acharya, N.; Veda, S.; Chaudhuri, N.R. Fast contingency screening and ranking for small signal stability assessment. In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Arrieta, R.; Rios, M.A.; Torres, A. Contingency Analysis and Risk Assessment of Small Signal Instability. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 1741–1746. [Google Scholar]
- Sevilla, F.R.S.; Vanfretti, L. A small-signal stability index for power system dynamic impact assessment using time-domain simulations. In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Yeu, R.H. Small Signal Analysis of Power Systems: Eigenvalue Tracking Method and Eigenvalueestimation Contingency for DSA; Illinois at Urbana-Champaign: Urbana, IL, USA, 2010. [Google Scholar]
- Rueda, L.; Cepeda, J.C.; Korai, A.W.; Gonzalez-longatt, F.M. PowerFactory Applications for Power System Analysis; Springer: Berlin/Heidelberg, Germany, 2014; pp. 249–266. [Google Scholar]
- Ashok, A.; Hahn, A.; Govindarasu, M. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment. J. Adv. Res.
**2014**, 5, 481–489. [Google Scholar] [CrossRef] [PubMed] - Hong, S.; Cheng, H.; Zeng, P. An N-k Analytic Method of Composite Generation and Transmission with Interval Load. Energies
**2017**, 10, 168. [Google Scholar] [CrossRef] - Jia, Y.; Meng, K.; Xu, Z. N-k Induced Cascading Contingency Screening. IEEE Trans. Power Syst.
**2015**, 30, 2824–2825. [Google Scholar] [CrossRef] - Patterson, S.A.; Apostolakis, G.E. Identification of critical locations across multiple infrastructures for terrorist actions. Reliab. Eng. Syst. Saf.
**2007**, 92, 1183–1203. [Google Scholar] [CrossRef] - Sandy Diaz, R.; Domingos, A.C.J.; Vazquez Silva, E. An algorithm to verify asymptotic stability conditions of a certain family of systems of differential equations. Appl. Math. Sci.
**2014**, 8, 1509–1520. [Google Scholar] - Xiang, W.; Xiao, J. Finite-time stability and stabilisation for switched linear systems. Int. J. Syst. Sci.
**2013**, 44, 384–400. [Google Scholar] [CrossRef] - Xiong, J.; Lam, J.; Shu, Z.; Mao, X. Stability Analysis of Continuous-Time Switched Systems with a Random Switching Signal. IEEE Trans. Autom. Contr.
**2014**, 59, 180–186. [Google Scholar] [CrossRef] [Green Version] - She, Z.; Xue, B. Discovering multiple Lyapunov functions for switched hybrid systems. SIAM J. Control Optim.
**2014**, 52, 3312–3340. [Google Scholar] [CrossRef] - De Souza, W.A.; Teixeira, M.C.M.; Santim, M.P.A.; Cardim, R.; Assuncao, E. On switched control design of linear time-invariant systems with polytopic uncertainties. Math. Probl. Eng.
**2013**, 2013, 595029. [Google Scholar] [CrossRef] - Jabali, M.B.A.; Kazemi, M.H. A new LPV modeling approach using PCA-based parameter set mapping to design a PSS. J. Adv. Res.
**2017**, 8, 23–32. [Google Scholar] [CrossRef] [PubMed] - Shamma, J.S. An overview of LPV systems. In Control of Linear Parameter Varying Systems with Applications; Mohammadpour, J., Scherer, C.W., Eds.; Springer: New York, NY, USA, 2012; pp. 3–26. [Google Scholar]
- Ma, J.; Wang, T.; Thorp, J.S.; Wang, Z.; Yang, Q.; Phadke, A.G. WAMS based damping control of inter-area oscillations employing energy storage system. Adv. Electr. Comput. Eng.
**2012**, 12, 33–40. [Google Scholar] [CrossRef] - Khaji, M.; Aghamohammadi, M.R. Online emergency damping controller to suppress power system inter-area oscillation using load-generation tripping. Electr. Power Syst. Res.
**2016**, 140, 806–820. [Google Scholar] [CrossRef] - Wang, C.; Zhang, Y. Fault Correspondence Analysis in Complex Electric Power Systems. Adv. Electr. Comput. Eng.
**2015**, 15, 11–16. [Google Scholar] [CrossRef] - Zhao, Y.M.; Xie, W.F.; Tu, X.W. Performance-based parameter tuning method of model-driven PID control systems. ISA Trans.
**2012**, 51, 393–399. [Google Scholar] [CrossRef] [PubMed] - Panda, S.; Padhy, N.P. Thyristor Controlled Series Compensator-based Controller Design Employing Genetic Algorithm: A Comparative Study. Int. J. Electron. Circuits Syst.
**2007**, 1, 38–47. [Google Scholar] - Banaei, M.R.; Toloue, H.; Kazemi, F.M.; Oskuee, M.R.J. Damping of power system oscillations using imperialist competition algorithm in power system equipped by HVDC. Ain Shams Eng. J.
**2015**, 6, 75–84. [Google Scholar] [CrossRef] - Agnihotri, S.P.; Waghmare, L.M. Regression model for tuning the PID controller with fractional order time delay system. Ain Shams Eng. J.
**2014**, 5, 1071–1081. [Google Scholar] [CrossRef] - Safari, A.; Soulat, B.; Ajami, A. Modeling and unified tuning of distributed power flow controller for damping of power system oscillations. Ain Shams Eng. J.
**2013**, 4, 775–782. [Google Scholar] [CrossRef] - Sahu, R.K.; Chandra Sekhar, G.T.; Panda, S. DE optimized fuzzy PID controller with derivative filter for LFC of multi source power system in deregulated environment. Ain Shams Eng. J.
**2015**, 6, 511–530. [Google Scholar] [CrossRef] - Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- DIgSILENT GmbH. Nine-Bus System Documentation 2014. Available online: http://digsilent.de/index.php/downloads.html (accessed on 26 July 2017).
- Anderson, P.M.; Fouad, A.A. Power System Control and Stability; The Iowa State University Press: Ames, IA, USA, 1977. [Google Scholar]
- Wazen, R.N.; Fernandes, T.S.P.; Aoki, A.R.; De Souza, W.E. Evaluation of the susceptibility of failures in steel structures of transmission lines. J. Control. Autom. Electr. Syst.
**2013**, 24, 174–186. [Google Scholar] [CrossRef] - Huang, T.; Voronca, S.L.; Purcarea, A.A.; Estebsari, A.; Bompard, E. Analysis of chain of events in major historic power outages. Adv. Electr. Comput. Eng.
**2014**, 14, 63–70. [Google Scholar] [CrossRef] - Chen, J.; Thorp, J.S.; Dobson, I. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model. Int. J. Electr. Power Energy Syst.
**2005**, 27, 318–326. [Google Scholar] [CrossRef] - Yu, X.; Singh, C. Probabilistic power system security analysis considering protection failures. COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
**2004**, 23, 35–47. [Google Scholar] [CrossRef]

**Figure 1.**Power system under study with 9-bus [37]. Reproduced with permission from publishing company, 2014.

**Figure 6.**Normalized active power of Line 4–6 per steady-state value for events with a new fault location in various operation scenarios: (

**a**) Scenario 1; (

**b**) Scenario 2; (

**c**) Scenario 3; (

**d**) Scenario 4; (

**e**) Scenario 5.

Event Number | Description | |
---|---|---|

Affected Line | Fault | |

1 | Line 5–7 | - |

2 | Line 8–9 | 3ph-SHC |

3 | Line 7–8 | 3ph-SHC |

4 | Line 6–9 | 3ph-SHC |

5 | Line 5–7 | 3ph-SHC |

6 | Line 4–5 | 3ph-SHC |

Rank | Event No. | NTDSITAE | Event No. | MP | Event No. | FREAE |
---|---|---|---|---|---|---|

1 | 2 | 7.89 | 2 | 21.43 | 5 | 88.11 |

2 | 5 | 5.03 | 3 | 21.19 | 6 | 74.06 |

3 | 6 | 2.49 | 5 | 15.48 | 1 | 72.73 |

4 | 1 | 2.27 | 1 | 14.29 | 3 | 72.49 |

5 | 3 | 0.88 | 4 | 14.29 | 2 | 72.41 |

6 | 4 | 0.14 | 6 | 14.05 | 4 | 70.69 |

Scenario Number | System Generation | System Loads | ||||
---|---|---|---|---|---|---|

G1 | G2 | G3 | LoadA | LoadB | LoadC | |

1 | 99 + j34 | 159 + j34 | 93 + j24 | 131 + j64 | 99 + j48 | 115 + j56 |

2 | 110 + j33 | 139 + j38 | 70 + j22 | 125 + j68 | 90 + j51 | 100 + j59 |

3 | 70 + j19 | 161 + j11 | 74 − j6 | 116 + j47 | 86 + j29 | 97 + j34 |

4 | 71 + j27 | 163 + j7 | 85 − j11 | 125 + j50 | 90 + j30 | 100 + j35 |

5 | 155 + j20 | 163 − j15 | 0 | 125 + j36 | 90 + j26 | 100 + j29 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abolhasani Jabali, M.B.; Kazemi, M.H.
Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach. *Energies* **2017**, *10*, 1088.
https://doi.org/10.3390/en10081088

**AMA Style**

Abolhasani Jabali MB, Kazemi MH.
Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach. *Energies*. 2017; 10(8):1088.
https://doi.org/10.3390/en10081088

**Chicago/Turabian Style**

Abolhasani Jabali, Mohammad Bagher, and Mohammad Hosein Kazemi.
2017. "Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach" *Energies* 10, no. 8: 1088.
https://doi.org/10.3390/en10081088