# Research on a Multiple-Receiver Inductively Coupled Power Transfer System for Mooring Buoy Applications

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Structure

## 3. Double-Receiver ICPT System for Mooring Buoy

#### 3.1. Compensate for Coils Inductance of Receivers

#### 3.2. Compensate for Coils Inductance of Tranmitter and Mooring Cable

## 4. Multiple-Receiver ICPT System for Mooring Buoy

## 5. Experimental Results and Discussion

#### 5.1. Experimental Setup

#### 5.2. Results and Discussion

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Charette, M.A.; Smith, W.H.F. The volume of earth’s ocean. Oceanography
**2010**, 23, 112–114. [Google Scholar] [CrossRef] - Yoshioka, D.; Sakamoto, H.; Ishihara, Y.; Matsumoto, T.; Timischl, F. Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy. IEEE Trans. Magn.
**2007**, 37, 2663–2665. [Google Scholar] [CrossRef] - Huang, Y.G.; Fang, C.; Li, X.F. Contactless power and data transmission for underwater sensor nodes. EURASIP J. Wirel. Commun. Netw.
**2013**, 2013, 81. [Google Scholar] [CrossRef] - Fang, C.; Li, X.; Xie, Z.; Xu, J.; Xiao, L. Design and optimization of an inductively coupled power transfer system for the underwater sensors of ocean buoys. Energies
**2017**, 10, 84. [Google Scholar] [CrossRef] - Boys, J.T.; Covic, G.A.; Reen, A.W.G. Stability and control of inductively coupled power transfer systems. IEE Proc. Electr. Power Appl.
**2000**, 147, 37–43. [Google Scholar] [CrossRef] - Elliott, G.A.J.; Covic, G.A.; Kacprzak, D.; Boys, J.T. A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems. IEEE Trans. Magn.
**2006**, 42, 3389–3391. [Google Scholar] [CrossRef] - Kissin, M.L.G.; Covic, G.A.; Boys, J.T. Steady-state flat-pickup loading effects in polyphase inductive power transfer systems. IEEE Trans. Ind. Electron.
**2011**, 58, 2274–2282. [Google Scholar] [CrossRef] - Pantic, Z.; Bai, S.; Lukic, S.M. ZCS LCC-compensated resonant inverter for inductive-power-transfer application. IEEE Trans. Ind. Electron.
**2011**, 58, 3500–3510. [Google Scholar] [CrossRef] - Zhang, W.; Wong, S.C.; Tse, C.K.; Chen, Q. Analysis and comparison of secondary series and parallel compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron.
**2014**, 29, 2979–2990. [Google Scholar] [CrossRef] - Sohn, Y.H.; Bo, H.C.; Lee, E.S.; Lim, G.C. General unified analyses of two-capacitor inductive power transfer systems: Equivalence of current-source SS and SP compensations. IEEE Trans. Power Electron.
**2015**, 30, 6030–6045. [Google Scholar] [CrossRef] - Esteban, B.; Sid-Ahmed, M.; Kar, N.C. A comparative study of power supply architectures in wireless EV charging systems. IEEE Trans. Power Electron.
**2015**, 30, 6408–6422. [Google Scholar] [CrossRef] - Wesemann, D.; Witte, S.; Michels, J.S. Effects of multiple loads in a contactless, inductively coupled linear power transfer system. In Proceedings of the International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 5–8 November 2009; pp. I-54–I-59. [Google Scholar]
- Liao, Y.H.; Hsu, C.C. A novel AC/DC bridgeless and contactless electrical energy transmission system for multi-load applications. IEEE Trans. Ind. Appl.
**2016**, 52, 1148–1156. [Google Scholar] - Casanova, J.J.; Zhen, N.L.; Lin, J. A loosely coupled planar wireless power system for multiple receivers. IEEE Trans. Ind. Electron.
**2009**, 56, 3060–3068. [Google Scholar] [CrossRef] - Choi, M.; Jang, T.; Jeong, J.; Jeong, S.; Blaauw, D.; Sylvester, D. A resonant current-mode wireless power receiver and battery charger with −32 dBm sensitivity for implantable systems. IEEE J. Solid-State Circuits
**2016**, 51, 2880–2892. [Google Scholar] [CrossRef] - Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A dynamic charging system with reduced output power pulsation for electric vehicles. IEEE Trans. Ind. Electron.
**2016**, 63, 6580–6590. [Google Scholar] [CrossRef] - Van Der Pijl, F.F.; Ferreira, J.A.; Bauer, P.; Polinder, H. Design of an inductive contactless power system for multiple users. In Proceedings of the 2006 IEEE Industry Applications Conference 41st IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; pp. 1876–1883. [Google Scholar]
- Liu, X.; Hui, S.Y. Optimal design of a hybrid winding structure for planar contactless battery charging platform. IEEE Trans. Power Electron.
**2008**, 23, 455–463. [Google Scholar] - Kim, J.; Son, H.C.; Kim, D.H.; Park, Y.J. Impedance matching considering cross coupling for wireless power transfer to multiple receivers. Wirel. Power Transf.
**2013**, 226–229. [Google Scholar] - Kim, J.; Kim, D.H.; Park, Y.J. Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices. IEEE Trans. Ind. Electron.
**2015**, 62, 2807–2813. [Google Scholar] [CrossRef] - Harry, H. Calculation of Inductance in Inductance, 1st ed.; Yuan, L., Ed.; National Defense Industry Press: Beijing, China, 1960; pp. 7–8. [Google Scholar]
- Zhong, W.X.; Hui, S.Y.R. Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron.
**2015**, 30, 4025–4034. [Google Scholar] [CrossRef] - Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M. Wireless power transfer via strongly coupled magnetic resonances. Science
**2007**, 317, 83–86. [Google Scholar] [CrossRef] [PubMed] - Deng, Q.; Liu, J.; Czarkowski, D.; Kazimierczuk, M.K. Frequency-dependent resistance of litz-wire square solenoid coils and quality factor optimization for wireless power transfer. IEEE Trans. Ind. Electron.
**2016**, 63, 2825–2837. [Google Scholar] [CrossRef] - Stewart, J. Calculus (Early Transcendentals), 7th ed.; Covello, L., Ed.; Pacific Grove Ca Brooks/Cole Publishing Company: Belmont, CA, USA, 2010; pp. 946–950. [Google Scholar]

**Figure 2.**Important compositions of a multiple-receiver ICPT system for mooring buoy: (

**a**) H-bridge inverter; (

**b**) Underwater system.

**Figure 6.**The power transfer efficiency versus different normalized angular frequency: (

**a**) Normalized angular frequency of mooring cable; (

**b**) Normalized angular frequency of TX.

**Figure 9.**The relationship between the voltage division ratio $\text{}{H}_{12}\text{}$ and the equivalent load of super-capacitor charging system ${R}_{SC2}$.

**Figure 10.**The relationship between the power transfer efficiency $\eta \text{}$ and the equivalent load of super-capacitor charging system $\text{}{R}_{SC2}$.

**Figure 12.**Waveforms measured by oscilloscopes: (

**a**) The waveform of voltage to underwater systems by compensating receivers; (

**b**) The waveform of current in mooring cable by compensating receivers; (

**c**) The waveform of voltage to underwater systems by compensating mooring cable; (

**d**) The waveform of current in mooring cable by compensating mooring cable; (

**e**) The waveform of voltage to underwater systems by compensating all loops; (

**f**) The waveform of current in mooring cable by compensating all loops.

Frequency (KHz) | In the Air (μH) | In the Sea (μH) |
---|---|---|

5 | 16.305 | 16.320 |

10 | 15.342 | 15.358 |

20 | 14.363 | 14.371 |

30 | 13.884 | 13.903 |

40 | 13.573 | 13.582 |

Symbol | Quantity | Value | Units |
---|---|---|---|

${d}_{i}$ | Inner diameter of toroidal magnetic core | 55.5 | mm |

${d}_{o}$ | Outer diameter of toroidal magnetic core | 85.7 | mm |

$h$ | Height of toroidal magnetic core | 25.4 | mm |

${N}_{c}$ | Number of turns per coil | 5 | — |

${\mu}_{r}$ | Relative permeability of ferrite | 10,000 | — |

Parameters | Quantity |
---|---|

${L}_{TX}$ | Self-inductance of AIC’s primary coil |

${R}_{TX}$ | Resistance of AIC’s primary coil |

${C}_{TX}$ | Compensate capacitor in transmitter |

${L}_{a}$ | Self-inductance of AIC’s secondary coil |

${L}_{c}$ | Self-inductance of mooring cable without inductive couplers |

${L}_{ui}$ | Self-inductance of UIC’s primary coil for receiver $i$ |

${L}_{RXi}$ | Self-inductance of UIC’s secondary coil for receiver $i$ |

${R}_{RXi}$ | Resistance of UIC’s secondary coil for receiver $i$ |

${C}_{RXi}$ | Resonant capacitor in receiver $i$ |

${R}_{Li}$ | The equivalent load resistance in receiver $i$ |

${L}_{m}$ | Self-inductance of mooring cable with all inductive couplers, normally the sum of ${L}_{a}$, ${L}_{c}$ and ${\sum}_{i=1}^{n}{L}_{ui}$ |

${R}_{m}$ | Resistance of mooring cable with inductive couplers |

${C}_{m}$ | Resonant capacitor of mooring cable |

Parameters | Values | Units |
---|---|---|

$f$ | 20,000 | Hz |

$\omega $ | 2π × 20,000 | rad/s |

${L}_{RX}$ | 470 | μH |

${R}_{L1}$ | 120 | Ω |

${R}_{L2}$ | 625 | Ω |

Parameters | Values | Units |
---|---|---|

$\omega $ | 2π × 20,000 | rad/s |

${L}_{TX}$ | 400 | μH |

${L}_{a}$ | 14 | μH |

${L}_{c}$ | 15 | μH |

${L}_{u1}$ | 15 | μH |

${L}_{u2}$ | 15 | μH |

${L}_{m}$ | 59 | μH |

${R}_{TX}$ | 4 | Ω |

${R}_{m}$ | 0.5 | Ω |

${k}_{a}\text{}\mathrm{and}\text{}{k}_{ui}$ | 1 |

Parameters | Values | Units |
---|---|---|

${L}_{TX}$ | 404.91 | μH |

${R}_{TX}$ | 5.29 | Ω |

${C}_{TX}$ | 156.49 | nF |

${L}_{c}$ | 14.36 | μH |

${L}_{m}$ | 78.14 | μH |

${R}_{m}$ | 0.72 | Ω |

${C}_{m}$ | 810.41 | nF |

${L}_{RX1}$ | 473.69 | μH |

${R}_{RX1}$ | 5.86 | Ω |

${C}_{RX1}$ | 133.71 | nF |

${L}_{RX2}$ | 474.22 | μH |

${R}_{RX2}$ | 5.16 | Ω |

${C}_{RX2}$ | 133.38 | nF |

${L}_{RX3}$ | 473.96 | μH |

${R}_{RX3}$ | 5.43 | Ω |

${C}_{RX3}$ | 133.52 | nF |

${M}_{a}$ | 73.76 | μH |

${M}_{u1}$ | 83.55 | μH |

${M}_{u2}$ | 85.66 | μH |

${M}_{u3}$ | 84.68 | μH |

Parameters | Compensate Receivers | Compensate Mooring Cable | Compensate All Loops |
---|---|---|---|

${P}_{SC1}$ (@${R}_{SC1}=83$ Ω) | 0.153 W | 0.963 W | 3.204 W |

${P}_{SC2}$ (@${R}_{SC2}=139$ Ω) | 0.120 W | 0.727 W | 2.022 W |

${P}_{SC3}$ (@${R}_{SC3}=434$ Ω) | 0.046 W | 0.262 W | 0.666 W |

${P}_{in}$ | 11.58 W | 7.29 W | 12.89 W |

$\eta $ | 2.75% | 26.78% | 45.71% |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xu, J.; Li, X.; Xie, Z.; Zhang, H.; Wu, T.; Fang, C. Research on a Multiple-Receiver Inductively Coupled Power Transfer System for Mooring Buoy Applications. *Energies* **2017**, *10*, 519.
https://doi.org/10.3390/en10040519

**AMA Style**

Xu J, Li X, Xie Z, Zhang H, Wu T, Fang C. Research on a Multiple-Receiver Inductively Coupled Power Transfer System for Mooring Buoy Applications. *Energies*. 2017; 10(4):519.
https://doi.org/10.3390/en10040519

**Chicago/Turabian Style**

Xu, Jiayi, Xingfei Li, Ziming Xie, Huilin Zhang, Tengfei Wu, and Cheng Fang. 2017. "Research on a Multiple-Receiver Inductively Coupled Power Transfer System for Mooring Buoy Applications" *Energies* 10, no. 4: 519.
https://doi.org/10.3390/en10040519