Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines
Abstract
:1. Introduction
2. Experimental Setup and Conditions
2.1. Test Engine
2.2. Experimental Setup
2.2.1. Engine-Out NO Measurement
2.2.2. Real-Time Calculation and Control of Engine-Out NO
2.2.3. Experimental Conditions
3. Description of the Real-Time NO Estimation Model
3.1. Determination of the Adiabatic Flame Temperature
3.2. Calculation of the Engine-Out NO
3.2.1. Calculation of the Cycle-Averaged NO Formation Rate
3.2.2. Determination of the NO Formation Area and Duration
3.3. Spatial Concentration Correction of the Calculated NO
- (1)
- Pressure in the burned zone and the unburned zone are identical. (Pbunred = Punburned)
- (2)
- The mass ratio of the burned to the unburned can be expressed as the global equivalent ratio (Φ) divided by (1 − Φ).
- (3)
- The temperature in the burned zone (Tburned) is treated as the maximum burned gas temperature (Tmax).
- (4)
- The temperature in the unburned zone can be calculated using the isentropic compression and expansion relationship:
3.4. Fitting of the Constant in the NO Estimation Model
4. Results and Discussion
4.1. Model Application in Steady-State Operation Conditions
4.2. Evaluation of the Model Input Parameter Sensitivity Analysis
4.3. Model Application in Transient Operation Conditions over a WLTC
4.4. Model Robustness Validation
4.5. Real-Time NO Emission Control during Steady-State Operating Conditions
5. Conclusions
- (1)
- as an engine emission calibrator in the engine development stage
- (2)
- for the real-time management of exhaust NO emissions
- (3)
- as an alerting system for physical NOx sensor failure
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
A | a constant in Equation (18) |
a | a constant in Equation (2) |
A/D | analog/digital |
AF | air-fuel ratio |
aTDC | after top dead center |
b | a constant in Equation (2) |
bTDC | before top dead center |
BMEP | Brake Mean Effective Pressure (bar) |
c | a constant in Equation (2) |
CA | Crank Angle (degree) |
CO | carbon monoxide |
CO2 | carbon dioxide |
CRDI | common rail direct injection |
d | a constant in Equation (2) |
DPF | Diesel Particulate Filter |
DT | Dwell Time (time interval between the end of pilot1 injection and start of main injection, s) |
ECU | Engine Control Unit |
EGR | Exhaust Gas Recirculation (-) |
EMS | Engine Management System |
EVC | exhaust valve close |
EVO | exhaust valve open |
IVC | intake valve close |
IVO | intake valve open |
k | specific heat ratio |
LNT | Lean NOx Trap |
RMSE | Root mean square error (mg/str) |
ROHR | Rate of Heat Release |
M | mass (kg) |
NO | nitric monoxide |
NO2 | nitrogen dioxide |
NOx | nitric oxides |
P | pressure (bar) |
SCR | selective catalytic reduction |
SVO | Swirl Valve Opening (%) |
T | temeperature (K) |
V | volume (m3) |
VGT | variable geometry turbine |
WLTC | worldwide harmonized light vehicles test cycle |
Z | mixture fraction (-) |
Greek Symbols | |
α | air availability (-) |
δ | a constant in Equation (11) (-) |
λ | air-excess ratio (-) |
ψ | molar N/O ratio (-) |
Φ | Equivalence ratio (-) |
ω | Swirl factor (-) |
Subscripts | |
ad | adiabatic |
e | equilibrium concentration |
max | maximum |
SOC | start of combustion |
ub | unburned |
References
- Mauzerall, D.L.; Sultan, B.; Kim, N.; Bradford, D.F. NOx emissions from large point sources: Variability in ozone production, resulting health damages and economic costs. Atmos. Environ. 2005, 39, 2851–2866. [Google Scholar] [CrossRef]
- Meszler, D.; German, J.; Mock, P.; Bandivadekar, A. CO2 Reduction Technologies for the European Car and Van Fleet, A 2025–2030 Assessment; The International Council on Clean Transportation (ICCT): Berlin, Germany, 2016. [Google Scholar]
- Yang, Z. Improving the Conversions between the Various Passenger Vehicle Fuel Economy/CO2 Emission Standards Around the World; The International Council on Clean Transportation (ICCT): Berlin, Germany, 2014. [Google Scholar]
- Sarangi, A.K.; McTaggart-Cowan, G.P.; Garner, C.P. The Effects of Intake Pressure on High EGR Low Temperature Diesel Engine Combustion; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Kimura, S.; Aoki, O.; Kitahara, Y.; Aiyoshizawa, E. Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Colban, W.F.; Miles, P.C.; Oh, S. Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Alriksson, M.; Denbratt, I. Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Forzatti, P.; Lietti, L.; Nova, I.; Tronconi, E. Diesel Nox aftertreatment catalytic technologies: Analogies in lnt and scr catalytic chemistry. Catal. Today 2010, 151, 202–211. [Google Scholar] [CrossRef]
- Theis, J.; Gulari, E. A LNT + SCR System for Treating the NOx Emissions from a Diesel Engine; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Curran, S.; Hanson, R.; Wagner, R.; Reitz, R.D. Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Kihas, D.; Uchanski, M.R. Engine-Out NOx Models for On-Ecu Implementation: A Brief Overview; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- D’Ambrosio, S.; Finesso, R.; Fu, L.; Mittica, A.; Spessa, E. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines. Appl. Energy 2014, 130, 265–279. [Google Scholar] [CrossRef]
- Asprion, J.; Chinellato, O.; Guzzella, L. A fast and accurate physics-based model for the Nox emissions of diesel engines. Appl. Energy 2013, 103, 221–233. [Google Scholar] [CrossRef]
- Andersson, M.; Johansson, B.; Hultqvist, A.; Noehre, C. A predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion; 01-3329, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Egnell, R. Combustion diagnostics by means of multizone heat release analysis and No calculation. SAE Trans. J. Engines 1998, 107. [Google Scholar] [CrossRef]
- Del Re, L.; Allgöwer, F.; Glielmo, L.; Guardiola, C.; Kolmanovsky, I. Automotive Model Predictive Control: Models, Methods and Applications; Springer: Berlin, Germany, 2010. [Google Scholar]
- Arrègle, J.; López, J.J.; Guardiola, C.; Monin, C. Sensitivity Study of a NOx Estimation Model for On-Board Applications; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Seykens, X.; Baert, R.; Somers, L.; Willems, F. Experimental validation of extended no and soot model for advanced hd diesel engine combustion. SAE Int. J. Engines 2009, 2, 606–619. [Google Scholar] [CrossRef]
- Willems, F.; Doosje, E.; Engels, F.; Seykens, X. Cylinder Pressure-Based Control in Heavy-Duty EGR Diesel Engines Using a Virtual Heat Release and Emission Sensor; SAE Paper; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Hegarty, K.; Favrot, R.; Rollett, D.; Rindone, G. Semi-Empiric Model Based Approach for Dynamic Prediction of NOx Engine Out Emissions on Diesel Engines; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Finesso, R.; Spessa, E. Real-Time Predictive Modeling of Combustion and Nox Formation in Diesel Engines under Transient Conditions; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Eriksson, L.; Nielsen, L. Modeling and Control of Engines and Drivelines; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Schejbal, M.; Štěpánek, J.; Marek, M.; Kočí, P.; Kubíček, M. Modelling of soot oxidation by NO2 in various types of diesel particulate filters. Fuel 2010, 89, 2365–2375. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Crocker, M.; Chen, B.-B.; Wang, X.-K.; Bai, Z.-F.; Shi, C. Non-thermal plasma-assisted Nox storage and reduction over cobalt-containing lnt catalysts. Catal. Today 2015, 258, 386–395. [Google Scholar] [CrossRef]
- Iwasaki, M.; Shinjoh, H. A comparative study of “standard”,“fast” and “NO2” scr reactions over fe/zeolite catalyst. Appl. Catal. A Gen. 2010, 390, 71–77. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Finesso, R.; Misul, D.; Spessa, E. Estimation of the Engine-Out NO2/NOx Ratio in a Euro vi Diesel Engine; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Hernandez, J.; Lapuerta, M.; Perez-Collado, J. A combustion kinetic model for estimating diesel engine Nox emissions. Combust. Theory Model. 2006, 10, 639–657. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Liew, C.; Gatts, T.; Wayne, S.; Shade, B.; Clark, N. An experimental investigation of NO2 emission characteristics of a heavy-duty h 2-diesel dual fuel engine. Int. J. Hydrog. Energy 2011, 36, 12015–12024. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Park, W.; Min, K.; Song, H.H.; Choi, H.; Yu, J.; Cho, S.H. The Development of Real-Time NOx Estimation Model and Its Application; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- ISO/IEC Guide 98-3:2008. Guide to the Expression of Uncertainty in Measurement, ISO: Geneva, Switzerland, 1995.
- Seykens, X.L.J. Development and Validation of a Phenomenological Diesel Engine Combustion Model. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2010. [Google Scholar]
- Turns, S. An Introduction to Combustion: Concepts and Applications; SAE International: Warrendale, PA, USA, 1996. [Google Scholar]
- Minami, T.; Takeuchi, K.; Shimazaki, N. Reduction of Diesel Engine NOx Using Pilot Injection; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 1995. [Google Scholar]
- Colin, O.; Benkenida, A. The 3-zones extended coherent flame model (ecfm3z) for computing premixed/diffusion combustion. Oil Gas Sci. Technol. 2004, 59, 593–609. [Google Scholar] [CrossRef]
- Kim, G.; Min, K. Numerical Study on the Multiple Injection Strategy in Diesel Engines Using a Modified 2-d Flamelet Model; 0148-7191, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Park, W.; Lee, J.; Min, K.; Yu, J.; Park, S.; Cho, S. Prediction of real-time no based on the in-cylinder pressure in diesel engines. Proc. Combus. Inst. 2013, 34, 3075–3082. [Google Scholar] [CrossRef]
- Finesso, R.; Spessa, E. Ignition delay prediction of multiple injections in diesel engines. Fuel 2014, 119, 170–190. [Google Scholar] [CrossRef]
- Le, M.K.; Kook, S. Injection pressure effects on the flame development in a light-duty optical diesel engine. SAE Int. J. Engines 2015, 8, 609–624. [Google Scholar] [CrossRef]
- Arrègle, J.; López, J.J.; Guardiola, C.; Monin, C. On board NOx prediction in diesel engines: A physical approach. In Automotive Model Predictive Control; Springer: Berlin, Gemany, 2010. [Google Scholar]
- Guardiola, C.; López, J.J.; Martín, J.; García-Sarmiento, D. Semiempirical in-cylinder pressure based model for NOx prediction oriented to control applications. Appl. Therm. Eng. 2011, 31, 3275–3286. [Google Scholar] [CrossRef]
- Mellor, A.M.; Mello, J.; Duffy, K.P.; Easley, W.; Faulkner, J. Skeletal Mechanism for NOx Chemistry in Diesel Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1998. [Google Scholar]
- Plee, S.; Ahmad, T.; Myers, J.; Siegla, D. Effects of flame temperature and air-fuel mixing on emission of particulate carbon from a divided-chamber diesel engine. In Particulate Carbon; Springer: Berlin, Gemany, 1981. [Google Scholar]
- Peckham, M.; Campbell, B.; Finch, A. Measurement of the effects of the exhaust gas recirculation delay on the nitrogen oxide emissions within a turbocharged passenger car diesel engine. J. Automob. Eng. 2011, 225, 1156–1166. [Google Scholar] [CrossRef]
Engine Type | In-Lined Compression Ignition 4 Cylinders | |
---|---|---|
EURO5 (Engine A) | EURO6 (Engine B) | |
Displaced volume | 1582 cc | 2199 cc |
Bore × Stroke | 77.2 mm × 84.5 mm | 85.4 mm × 96 mm |
Compression ratio | 17.3 | 16 |
Turbocharger type | Single stage VGT | Single stage E-VGT |
Fuel injection system | CRDI (Solenoid injector) | CRDI (Solenoid injector) |
Maximum power and torque | 94 kW/260 N.m | 150 kW/440 N.m |
Valve timing | IVO/IVC (ATDC17/ABDC14) EVO/EVC (BBDC23/BTDC 20) | IVO/IVC (ATDC10/ABDC7) EVO/EVC (BBDC32/BTDC17) |
Device | Error | Expanded Uncertainty (%) | |
---|---|---|---|
Fast NO analyzer | Zero drift | <5 ppm/h | ≤2.1 |
Span drift | <1% full scale/h | ||
Exhaust gas analyzer | Zero drift | <1% full scale/24 h | ≤4.5 |
Span drift | <1% full scale/24 h | ||
Noise | <2% full scale | ||
Linearity | <1% full scale | ||
Piezo electric sensor | Linearity | <0.3% full scale | ≤5.7 |
Sensitivity shift | <2% (at 23–350 °C) | ||
<0.5% (at 200 ± 50 °C) | |||
Short term drift (Thermal shock) | <2% for minimum pressure (9 bar) | ||
<1% for maximum pressure (250 bar) | |||
Charge amplifier | ≤0.2 | ||
Analog/digital error | A/D conversion linearity | ≤0.024 |
Experimental Conditions | Engine A | Engine B | Sweep Interval (Based on Typical) |
---|---|---|---|
EGR (%) | 0 to 40 | 0 to 56 | 5 Steps between min/max |
Minimum: −10% | |||
Maximum: 20% | |||
Rail pressure (bar) | 300 to 1400 | ±100 | |
Boost pressure (bar) | 1 to 2.3 | ±0.1 | |
Main injection timing (aTDC) | −6 to 2 | ±2, 4 | |
Equivalence ratio (Φ) | 0.2 to 0.9 | ||
Injection per cycle | 3 (pilot2, pilot1, main) or 4 (pilot2, pilot1, main, post) | ||
Pilot + Pre injection (mg/str) | 1 to 3 |
Engine A-Aged | Measured | Estimated | Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Air map offset | −3% | general | +3% | −3% | general | +3% | −3% | general | +3% |
Total NO (g, norm.) | 0.904 | 1.000 | 1.123 | 0.883 | 0.985 | 1.095 | −2.3 | −1.5 | −2.5 |
Total NO_bypassed (g, norm.) | 0.738 | 0.698 | −5.4 |
Engine Speed | BMEP_General (bar) | BMEP_Bypassed (bar) | ∆ Boost Pressure (hPa) | ∆ EGR (%) | ∆ φ (-) |
---|---|---|---|---|---|
1500 | 9.4 | 7.0 | −141.9 | 16.9 | 0.31 |
1500 | 11.4 | 8.6 | −138.1 | 16.8 | 0.29 |
2000 | 6.9 | 5.2 | −71.9 | 15.1 | 0.27 |
2000 | 9.5 | 6.8 | −112.4 | 15.8 | 0.32 |
2000 | 12.1 | 8.4 | −116.8 | 15.4 | 0.33 |
2000 | 14.4 | 10.6 | −80.6 | 17.0 | 0.32 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, Y.; Kim, G.; Min, K. Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines. Energies 2017, 10, 284. https://doi.org/10.3390/en10030284
Lee S, Lee Y, Kim G, Min K. Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines. Energies. 2017; 10(3):284. https://doi.org/10.3390/en10030284
Chicago/Turabian StyleLee, Seungha, Youngbok Lee, Gyujin Kim, and Kyoungdoug Min. 2017. "Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines" Energies 10, no. 3: 284. https://doi.org/10.3390/en10030284
APA StyleLee, S., Lee, Y., Kim, G., & Min, K. (2017). Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines. Energies, 10(3), 284. https://doi.org/10.3390/en10030284