Computational Model of a Biomass Driven Absorption Refrigeration System
Abstract
:1. Introduction
2. Biomass Source to Drive Absorption Refrigeration
- Forest residues;
- Wood waste;
- Crop residues;
- Wood crops (SRC, Willow, and Miscanthus).
- Animal wastes;
- Industrial and municipal wastes;
- High energy crops;
- Algae—a huge aquatic biomass source, with water covering about 75% of the earth.
- Boiler capacity;
- Boiler efficiency;
- Operating hours;
- Type and availability of biomass.
3. Modelling of the Aqua-Ammonia Refrigeration System
3.1. Governing Equations
3.2. Boiler Heat Exchanger Description
- Steady operating conditions apply;
- The heat exchanger is well insulated so that the heat loss to the surroundings is negligible;
- The kinetic and potential energy changes of the fluid are very small and negligible;
- No fouling conditions apply;
- The properties of the fluid remain the same throughout the process.
4. Result and Discussion
4.1. Biomass Quantity Required
4.2. Absorption Refrigeration
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Area of generator heat transfer surface (m) | |
Area of heat transfer surface of heat exchanger (m) | |
Biomass Quantity (Tonnes) | |
Specific heat capacity (kJ/kgK) | |
Energy Required (kW/h) | |
Circulation ratio | |
Fuel density (kJ/m) | |
FLHE | Full load heating hours equivalent (h) |
Enthalpy of liquid component (kJ/kg) | |
Enthalpy of vapour component (kJ/kg) | |
Liquid phase enthalpy (kJ/kg) | |
Vapour phase enthalpy (kJ/kg) | |
MC | Moisture content (%) |
Refrigerant mass flow (kg/s) | |
Condenser pressure (MPa) | |
Evaporator pressure (MPa) | |
Absorber heat transfer (kW) | |
Condenser heat transfer (kW) | |
Evaporator heat transfer (kW) | |
Generator heat transfer (kW) | |
Heat exchanger heat transfer (kW) | |
Rate of heat loss (kW) | |
Ambient temperature (C) | |
Temperature of cold water at inlet (C) | |
Temperature of cold water at outlet (C) | |
Temperature of hot water at inlet (C) | |
Temperature of hot water at outlet (C) | |
U | Overall heat transfer coefficient |
Boiler Efficiency (%) |
References
- Santamouris, M.; Argiriou, A. Renewable energies and energy conservation technologies for buildings in southern Europe. Int. J. Sol. Energy 1994, 15, 69–79. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Ullah, K.; Saidur, R.; Ping, H.; Akikur, R.; Shuvo, N. A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 2013, 24, 499–513. [Google Scholar] [CrossRef]
- Florides, G.A.; Tassou, S.A.; Kalogirou, S.A.; Wrobel, L.C. Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 2002, 6, 557–572. [Google Scholar] [CrossRef]
- Banks, D. An Introduction to Thermogeology: Ground Source Heating and Cooling, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar]
- Kim, D.S.; Infante Ferreira, C.A. Solar refrigeration options—A state-of-the-art review. Int. J. Refrig. 2008, 31, 3–15. [Google Scholar] [CrossRef]
- Fan, Y.; Luo, L.; Souyri, B. Review of solar sorption refrigeration technologies: Development and applications. Renew. Sustain. Energy Rev. 2007, 11, 1758–1775. [Google Scholar] [CrossRef]
- Sahay, A.; Sethi, V.K.; Tiwari, A.C.; Pandey, M. A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS). Renew. Sustain. Energy Rev. 2015, 42, 306–312. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Said, S.A.M. A review of solar powered absorption systems. Renew. Sustain. Energy Rev. 2015, 42, 93–115. [Google Scholar] [CrossRef]
- Desideri, U.; Proietti, S.; Sdringola, P. Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications. Appl. Energy 2009, 86, 1376–1386. [Google Scholar] [CrossRef]
- Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U. Alternative designs for a 24-h operating solar-powered absorption refrigeration technology. Int. J. Refrig. 2012, 35, 1967–1977. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. General review of solar-powered closed sorption refrigeration systems. Energy Convers. Manag. 2015, 105, 403–422. [Google Scholar] [CrossRef]
- Bales, C.; Ayadi, O. Modelling of commercial absorption heat pump with integral storage. In Proceedings of the 11th International Conference on Energy Storage, Stockholm, Sweden, 14–17 June 2009.
- Mathkor, R.Z.; Agnew, B.; Al-Weshahi, M.A.; Latrsh, F. Exergetic analysis of an integrated tri-generation organic rankine cycle. Energies 2015, 8, 8835–8856. [Google Scholar] [CrossRef]
- Kalinowski, P.; Hwang, Y.; Radermacher, R.; Al Hashimi, S.; Rodgers, P. Application of waste heat powered absorption refrigeration system to the LNG recovery process. Int. J. Refrig. 2009, 32, 687–694. [Google Scholar] [CrossRef]
- Manzela, A.A.; Hanriot, S.M.; Cabezas-Gómez, L.; Sodré, J.R. Using engine exhaust gas as energy source for an absorption refrigeration system. Appl. Energy 2010, 87, 1141–1148. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Al-Shemmeri, T.; Zeng, S.; Huang, X.; Li, S.; Yang, J. Characteristics of a diffusion absorption refrigerator driven by waste heat from engineexhaust. Proc. Instit. Mech. Eng. Part E J. Process Mech. Eng. 2006, 220, 139–149. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Al-Shemmeri, T.; Ruxton, T.; Turner, S.; Zeng, S.; Huang, J.; He, Y.; Huang, X. An experimental investigation of a household size trigeneration. Appl. Therm. Eng. 2007, 27, 576–585. [Google Scholar] [CrossRef]
- Rachford, H.H.; Rice, J.D. Procedure for use of electrical digital computers in calculating flash vaporization hydrocarbon equilibrium. Trans. AIME 1952, 4, 19–20. [Google Scholar]
- Ladanai, S.; Vinterbäck, J. Global Potential of Sustainable Biomass for Energy; Department of Energy and Technology, Institutionen för Energi Och Teknik Swedish University of Agricultural Sciences: Uppsala, Sweden, 2009; p. 32. [Google Scholar]
- Caillat, S.; Vakkilainen, E. Chapter 9—Large-scale biomass combustion plants: An overview. In Biomass Combustion Science, Technology and Engineering; Elsevier: Amsterdam, The Netherlands, 2013; pp. 189–224. [Google Scholar]
- Bridgwater, A.V. The technical and economic feasibility of biomass gasification for power generation. Fuel 1995, 74, 631–653. [Google Scholar] [CrossRef]
- Treado, S. The effect of electric load profiles on the performance of off-grid residential hybrid renewable energy systems. Energies 2015, 8, 11120–11138. [Google Scholar] [CrossRef]
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Sopegno, A.; Rodias, E.; Bochtis, D.; Busato, P.; Berruto, R.; Boero, V.; Sørensen, C. Model for energy analysis of Miscanthus production and transportation. Energies 2016, 9, 392. [Google Scholar] [CrossRef]
- Bekele, K.; Hager, H.; Mekonnen, K. Woody and non-woody biomass utilisation for fuel and implications on plant nutrients availability in the mukehantuta watershed in ethiopia. Afr. Crop Sci. J. 2013, 21, 625–636. [Google Scholar]
- Pátek, J.; Klomfar, J. Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system. Int. J. Refrig. 1995, 18, 228–234. [Google Scholar] [CrossRef]
- Ziegler, B.; Trepp, C. Equation of state for ammonia-water mixtures. Int. J. Refrig. 1984, 7, 101–106. [Google Scholar] [CrossRef]
- Kherris, S.; Makhlouf, M.; Zebbar, D.; Sebbane, O. Contribution study of the thermodynamics properties of the ammonia-water mixtures. Therm. Sci. 2013, 17, 891–902. [Google Scholar] [CrossRef]
- Ganesh, N.S.; Srinivas, T. Evaluation of thermodynamic properties of ammonia- water mixture up to 100 bar for power application systems. J. Mech. Eng. Res. 2011, 3, 25–39. [Google Scholar]
- Collazo, J.; Porteiro, J.; Míguez, J.L.; Granada, E.; Gómez, M.A. Numerical simulation of a small-scale biomass boiler. Energy Convers. Manag. 2012, 64, 87–96. [Google Scholar] [CrossRef]
- Martin, R.; Mark, M. Biomass Heating: A Practical Guide for Potential Users; In-Depth Guide CTG012; Carbon Trust: London, UK, 2007. [Google Scholar]
- Cai, W.; Sen, M.; Paolucci, S. Dynamic simulation of an ammonia-water absorption refrigeration system. Ind. Eng. Chem. Res. 2012, 51, 2070–2076. [Google Scholar] [CrossRef]
- Sun, D.W. Thermodynamic design data and optimum design maps for absorption refrigeration systems. Appl. Therm. Eng. 1997, 17, 211–221. [Google Scholar]
- Sun, D.W. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems. Energy Convers. Manag. 1998, 39, 357–368. [Google Scholar] [CrossRef]
i | |||
---|---|---|---|
1 | 0 | 0 | +0.322302 × 10 |
2 | 0 | 1 | −0.384206 |
3 | 0 | 2 | +0.460965 × 10 |
4 | 0 | 3 | −0.378945 × 10 |
5 | 0 | 4 | +0.135610 × 10 |
6 | 1 | 0 | +0.487755 |
7 | 1 | 2 | −0.120108 |
8 | 1 | 2 | +0.106154 × 10 |
9 | 2 | 3 | −0.533589 × 10 |
10 | 4 | 0 | +0.785041 × 10 |
11 | 5 | 0 | −0.115941 × 10 |
12 | 5 | 1 | −0.523150 × 10 |
13 | 6 | 0 | +0.489596 × 10 |
14 | 13 | 1 | 0.421059 × 10 |
i | |||
---|---|---|---|
1 | 0 | 0 | +0.324004 × 10 |
2 | 0 | 1 | −0.395920 |
3 | 0 | 2 | −0.434624 × 10 |
4 | 0 | 3 | −0.218943 × 10 |
5 | 1 | 0 | −0.143526 × 10 |
6 | 1 | 1 | +0.105256 × 10 |
7 | 1 | 2 | −0.719281 × 10 |
8 | 2 | 0 | +0.122362 × 10 |
9 | 2 | 1 | −0.224368 × 10 |
10 | 3 | 0 | −0.210780 × 10 |
11 | 3 | 1 | 0.110834 × 10 |
12 | 4 | 0 | +0.145399 × 10 |
13 | 4 | 2 | +0.644312 |
14 | 5 | 2 | −0.221264 × 10 |
15 | 5 | 2 | −0.756266 |
16 | 6 | 0 | −0.135529 × 10 |
17 | 7 | 2 | +0.183541 |
Coefficients | Ammonia | Water |
---|---|---|
3.971423 × 10 | 2.748796 × 10 | |
−1.790557 × 10 | −1.016665 × 10 | |
−1.308905 × 10 | −4.452025 × 10 | |
3.752836× 10 | 8.389264 × 10 | |
1.634519 × 10 | 1.214557 × 10 | |
−6.508119 | −1.898065 | |
1.448937 | 2.911966 × 10 | |
−1.049377 × 10 | 2.136131 × 10 | |
−8.288224 | −3.169291 × 10 | |
−6.647257 × 10 | −4.631611 × 10 | |
−3.045352 × 10 | 0.0 | |
3.673647 | 4.019170 | |
9.989629 × 10 | −5.175550 × 10 | |
3.617622 × 10 | 1.951939 × 10 | |
4.87853 | 21.821141 | |
26.468879 | 60.965058 | |
3.2252 | 3.0705 | |
2.0000 | 3.0000 |
Coefficients | Coefficients | ||
---|---|---|---|
−41.733398 | 0.387983 | ||
0.02414 | 0.004772 | ||
6.702285 | −4.648107 | ||
−0.11475 | 0.836376 | ||
63.608968 | −3.553627 | ||
−62.490768 | 0.000904 | ||
1.761064 | 21.361723 | ||
0.008626 | −20.736547 |
Fuel Type | Average Energy Density (kJ/tonne) |
---|---|
Wood chip (30% MC) | 3000 |
Wood pellets | 5000 |
Log wood (stacked-air dried; 20% MC) | 4200 |
Wood | 5400 |
Mischantus | 4700 |
Literature | Generator Temp (C) | Weak Sol (%) | Strong Sol (%) | Circulation Ratio (f) |
---|---|---|---|---|
Sun [34] | 60 | 47.1 | 62.4 | 3.41 |
Present work | 60 | 47.1 | 62.5 | 3.40 |
Sun [34] | 70 | 41.4 | 62.6 | 2.70 |
Present work | 70 | 41.4 | 62.6 | 2.76 |
Sun [34] | 80 | 36.2 | 62.5 | 2.4 |
Present work | 80 | 36.4 | 62.5 | 2.4 |
Sun [34] | 90 | 31.4 | 62.5 | 2.2 |
Present work | 90 | 31.5 | 62.5 | 2.2 |
Literature | Generator Temp (C) | (kW) | (kW) | (kW) | (kW) | COP |
---|---|---|---|---|---|---|
Sun [34] | 60 | 25.73 | 21.8 | 24.43 | 20.52 | 0.80 |
Present work | 60 | 25.84 | 21.6 | 26.5 | 21.75 | 0.84 |
Sun [34] | 70 | 26.14 | 21.94 | 24.73 | 20.52 | 0.78 |
Present work | 70 | 26.19 | 21.47 | 23.80 | 20.76 | 0.79 |
Sun [34] | 80 | 26.55 | 21.99 | 25.10 | 20.52 | 0.77 |
Present work | 80 | 26.65 | 20.13 | 25.70 | 20.65 | 0.77 |
Sun [34] | 90 | 26.92 | 21.97 | 25.48 | 20.52 | 0.76 |
Present work | 90 | 27.19 | 20.31 | 24.40 | 20.81 | 0.76 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbikan, M.; Al-Shemmeri, T. Computational Model of a Biomass Driven Absorption Refrigeration System. Energies 2017, 10, 234. https://doi.org/10.3390/en10020234
Mbikan M, Al-Shemmeri T. Computational Model of a Biomass Driven Absorption Refrigeration System. Energies. 2017; 10(2):234. https://doi.org/10.3390/en10020234
Chicago/Turabian StyleMbikan, Munyeowaji, and Tarik Al-Shemmeri. 2017. "Computational Model of a Biomass Driven Absorption Refrigeration System" Energies 10, no. 2: 234. https://doi.org/10.3390/en10020234
APA StyleMbikan, M., & Al-Shemmeri, T. (2017). Computational Model of a Biomass Driven Absorption Refrigeration System. Energies, 10(2), 234. https://doi.org/10.3390/en10020234