# Solution Validation for a Double Façade Prototype

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- This validation must be done once the simulation project is finished and once the implementation of the results obtained from the model are applied to the system. This implies that the contractor believes in the model, and now we are going to perform a new validation.
- The complexity to analyze the modified system in this ambit (environmental area).

## 2. The Model

^{2}·K (30 cm thick rock wool); on the one hand, the resulting reference data (the data used to perform the comparison between the different simulations) do not increase significantly and, on the other hand, we prepare the virtual design with materials and their real properties.

^{3}/h·m

^{2}.

## 3. Implementing the Results in the System

#### 3.1. Prototype Sensors

#### 3.2. Data Acquisition

^{2}). The indoor conditions that can be analyzed and studied are (i) temperature (°C); (ii) HR (%); (iii) Illumination (lux); (iv) CO

_{2}(ppm); (v) Consumption (W) and (vi) Radiation (W/m

^{2}).

## 4. Solution Validation

#### 4.1. Visual Inspection of the Data

#### 4.2. Statistical Analysis of the Solution

#### 4.2.1. Radiation

- Wilcoxon signed rank test
- data: Data.for.the.paper.by.day$Radiation_model and Data.for.the.paper.by.day$Radiation_system.
- V = 326, p-value = 0.2539
- Alternative hypothesis: true location shift is not equal to 0

- Wilcoxon signed rank test with continuity correction
- data: Data.for.the.paper$Radiation_model and Data.for.the.paper$Radiation_system
- V = 49500.5, p-value = 0.292
- Alternative hypothesis: true location shift is not equal to 0

#### 4.2.2. External Temperature

- Wilcoxon signed rank test
- data: Data.for.the.paper.by.day$Temperature_model and Data.for.the.paper.by.day$Temperature_system
- V = 52, p-value = 1.802 × 10
^{−5} - alternative hypothesis: true location shift is not equal to 0

- Wilcoxon signed rank test
- data:Data.for.the.paper.by.day$Temperature_model_log and Data.for.the.paper.by.day$Temperature_system_log
- V = 51, p-value = 1.603 × 10
^{−}^{5} - alternative hypothesis: true location shift is not equal to 0

- Wilcoxon signed rank test
- data: Data.for.the.paper.by.day$Temperature_model_m[x] and Data.for.the.paper.by.day$Temperature_system[x]
- V = 190, p-value = 0.7265
- alternative hypothesis: true location shift is not equal to 0

#### 4.2.3. Ambient Temperature

- Wilcoxon signed rank test
- data: Data.for.the.paper.by.day$Ambient_model_m[x] and Data.for.the.paper.by.day$Ambient_system[x]
- V = 182, p-value = 0.8809
- alternative hypothesis: true location shift is not equal to 0

#### 4.3. Granger Causality

- Granger causality test
- Model 1:
- Data.for.the.paper.by.day$Ambient_system[x] ~Lags(Data.for.the.paper.by.day$Ambient_system[x], 1:1) + Lags(Data.for.the.paper.by.day$Ambient_model_m[x], 1:1)
- Model 2:
- Data.for.the.paper.by.day$Ambient_system[x] ~Lags(Data.for.the.paper.by.day$Ambient_system[x], 1:1)
- Res.Df Df F Pr(>F)
- 1 22
- 2 23 −1 2.9019 0.1026

- Granger causality test
- Model 1:
- Data.for.the.paper.by.day$Ambient_model_m[x] ~Lags(Data.for.the.paper.by.day$Ambient_model_m[x], 1:1)+Lags(Data.for.the.paper.by.day$Ambient_system[x], 1:1)
- Model 2:
- Data.for.the.paper.by.day$Ambient_model_m[x] ~Lags(Data.for.the.paper.by.day$Ambient_model_m[x], 1:1)
- Res.Df Df F Pr(>F)
- 1 22
- 2 23 −1 0.204 0.6559

- Robust Gamma Rank Correlation:
- data: Data.for.the.paper.by.day$Ambient_system [x] and Data.for.the.paper.by.day$Ambient_model_m [x] (length = 26)
- similarity: linear
- rx = 0.2537676/ry = 0.2722265
- t-norm: min
- alternative hypothesis: true gamma is not equal to 0
- sample gamma = −0.03597242
- estimated p-value = 0.824 (824 of 1000 values)

## 5. Discussion

## 6. Concluding Remarks

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Nomenclature

Accreditation | The process in which certification of competency or credibility for the simulation model is presented. |

CFD | Computational Fluid Dynamics. |

JSEED | Japan-Spain Energy Efficient Development for Ultra-Low Energy Buildings |

Validation | The process to assure that a model is correct. |

Verification | The process to assure that a model is correctly implemented. |

## References

- ACCIONA Japan-Spain Energy Efficient Development for Ultra-Low Energy Buildings. Available online: http://www.acciona-infraestructuras.es/innovacion/area-ecoeficiencia-y-sostenibilidad/jseed.aspx?pag=&desde=8429 (accessed on 12 June 2015).
- Avada. The Need 4b Partner Acciona Tests Building Components within the Test Cell Project. Available online: http://need4b.eu/?p=13969&lang=sv (accessed on 23 November 2017).
- Sargent, R. Verification and validation of simulation models. In Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, USA, 13–16 December 2009; Volume 37, pp. 177–183. [Google Scholar]
- Sargent, R.G. Verification and validation of simulation models. J. Simul.
**2013**, 7, 12–24. [Google Scholar] [CrossRef] - Sargent, R.G. An interval statistical procedure for use in validation of simulation models. J. Simul.
**2015**, 9, 232–237. [Google Scholar] [CrossRef] - Balci, O. Golden rules of verification, validation, testing, and certification of modeling and simulation applications. SCS M&S Mag.
**2010**, 4, 1–7. [Google Scholar] - Balci, O. Verification, validation, and certification of modeling and simulation applications. In Proceedings of the 2003 Winter Simulation Conference, New Orleans, LA, USA, 7–10 December 2003; pp. 150–158. [Google Scholar]
- Jabri, S.; El Koursi, E.M.; Bourdeaud’huy, T.; Lemaire, E. European railway traffic management system validation using UML/Petri nets modelling strategy. Eur. Transp. Res. Rev.
**2010**, 2, 113–128. [Google Scholar] [CrossRef] - Specification and Description Language (SDL). Available online: http://www.sdl-forum.org/SDL/Overview_of_SDL.pdf (accessed on 12 June 2015).
- Robinson, S. Simulation verification, validation and confidence: A tutorial. Simul. Trans. Soc. Model. Simul. Int.
**1999**, 16, 63–69. [Google Scholar] - Robinson, S.; Brooks, R.J. Independent verification and validation of an industrial simulation model. Simul. Trans. Soc. Model. Simul. Int.
**2010**, 86, 405–416. [Google Scholar] [CrossRef] - Vedrenne, M.; Borge, R.; Lumbreras, J.; Rodríguez, M.E. Advancements in the design and validation of an air pollution integrated assessment model for Spain. Environ. Model. Softw.
**2014**, 57, 177–191. [Google Scholar] [CrossRef] - Lopes, J.; Silva, C.; Cardoso, A. Validation of a water quality model for the Ria de Aveiro lagoon, Portugal. Environ. Model. Softw.
**2008**, 23, 479–494. [Google Scholar] [CrossRef] - Kersebaum, K.C.; Boote, K.J.; Jorgenson, J.S.; Nendel, C.; Bindi, M.; Frühauf, C.; Gaiser, T.; Hoogenboom, G.; Kollas, C.; Olesen, J.E.; et al. Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environ. Model. Softw.
**2015**, 72, 402–417. [Google Scholar] [CrossRef] - Sarrazin, F.; Pianosi, F.; Wagener, T. Global Sensitivity Analysis of environmental models: Convergence and validation. Environ. Model. Softw.
**2016**, 79, 135–152. [Google Scholar] [CrossRef] - Liu, C.; Li, A.; Yang, C.; Zhang, W. Simulating air distribution and occupants’ thermal comfort of three ventilation schemes for subway platform. Build. Environ.
**2017**, 125, 15–25. [Google Scholar] [CrossRef] - Tan, B.; Yavuz, Y.; Otay, E.N.; Çamlıbel, E. Optimal selection of energy efficiency measures for energy sustainability of existing buildings. Comput. Oper. Res.
**2016**, 66, 258–271. [Google Scholar] [CrossRef] - Chang, K.H. A decision support system for planning and coordination of hybrid renewable energy systems. Decis. Support Syst.
**2014**, 64, 4–13. [Google Scholar] [CrossRef] - Mattiussi, A.; Rosano, M.; Simeoni, P. A decision support system for sustainable energy supply combining multi-objective and multi-attribute analysis: An Australian case study. Decis. Support Syst.
**2014**, 57, 150–159. [Google Scholar] [CrossRef] - Lei, H.; Wang, R.; Zhang, T.; Liu, Y.; Zha, Y. A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center. Comput. Oper. Res.
**2016**, 75, 103–117. [Google Scholar] [CrossRef] - Palonen, M.; Hasan, A.; Siren, K. A genetic algorithm for optimization of building envelope and hvac system parameters. In Proceedings of the 11th IBPSA Conference, Glasgow, UK, 27–30 July 2009; pp. 159–166. [Google Scholar]
- Cai, Y.; Sanstad, A.H. Model uncertainty and energy technology policy: The example of induced technical change. Comput. Oper. Res.
**2016**, 66, 362–373. [Google Scholar] [CrossRef] - Patiño-Cambeiro, F.; Bastos, G.; Armesto, J.; Patiño-Barbeito, F. Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation. Energies
**2017**, 10, 1032. [Google Scholar] [CrossRef] - Ma, Y.; Saha, S.; Miller, W.; Guan, L. Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings. Energies
**2017**, 10, 1463. [Google Scholar] [CrossRef] - Blanco, J.M.; Arriaga, P.; Rojí, E.; Cuadrado, J. Investigating the thermal behavior of double-skin perforated sheet façades: Part A: Model characterization and validation procedure. Build. Environ.
**2014**, 82, 50–62. [Google Scholar] [CrossRef] - Parra, J.; Guardo, A.; Egusquiza, E.; Alavedra, P. Thermal performance of ventilated double skin façades with venetian blinds. Energies
**2015**, 8, 4882–4898. [Google Scholar] [CrossRef] [Green Version] - EU Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off. J. Eur. Union
**2010**, 13–35. [CrossRef] - International Energy Agency (IEA). Energy Efficiency Market Report; IEA: Paris, France, 2014; ISBN 978-92-64-21826-0. [Google Scholar]
- Salom, J.; Widén, J.; Candanedo, J.A.; Sartori, I.; Voss, K.; Marszal, A.J. Understanding Net Zero Energy Buildings: Evaluation of load matching and grid interaction indicators. Proc. Build. Simul.
**2011**, 6, 14–16. [Google Scholar] - Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build.
**2012**, 48, 220–232. [Google Scholar] [CrossRef] - IDEA. Guía Técnica Condiciones Climáticas Exteriores de Proyecto; IDEA: Madrid, Spain, 2010. [Google Scholar]
- Weather Data All Regions: Europe WMO Region 6. Available online: https://energyplus.net/weather-region/europe_wmo_region_6 (accessed on 23 November 2017).
- Ministerio de la Presidencia. Available online: http://documentos.060.es/legislacion/common/34073.pdf (accessed on 23 November 2017).
- Fomento, M. de Código Técnico de la Edificación. Available online: http://www.fomento.gob.es/mfom/lang_castellano/direcciones_generales/arq_vivienda/_informacion/normativa/CodigoEdificacion.htm (accessed on 23 November 2017).
- Molina, C.G. Alternativas Para la Mejora de la Eficiencia Energética de Los Acristalamientos: Los Vidrios Dinámicos. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2011. [Google Scholar]
- Fonseca i Casas, P.; Fonseca i Casas, A.; Garrido-Soriano, N.; Casanovas, J. Formal simulation model to optimize building sustainability. Adv. Eng. Softw.
**2014**, 69, 62–74. [Google Scholar] [CrossRef] [Green Version] - Ortiz, J.; Fonseca, A.; Salom, J.; Garrido, N.; Fonseca, P.; Russo, V. Comfort and economic criteria for selecting passive measures for the energy refurbishment of residential buildings in Catalonia. Energy Build.
**2016**, 110, 195–210. [Google Scholar] [CrossRef] - Ortiz, J.; Fonseca i Casas, A.; Salom, J.; Garrido Soriano, N.; Fonseca i Casas, P. Cost-effective analysis for selecting energy efficiency measures for refurbishment of residential buildings in Catalonia. Energy Build.
**2016**, 128, 442–457. [Google Scholar] [CrossRef] - Fonseca i Casas, P. SDL distributed simulator. In Proceedings of the 2008 Winter Simulation Conference, Global Gateway to Discovery—WSC, Miami, FL, USA, 7–10 December 2008. [Google Scholar]
- Energy Plus. Input Output Reference: The Encyclopedic Reference to Energy Plus Input and Output. Available online: https://energyplus.net/sites/default/files/pdfs/pdfs_v8.3.0/InputOutputReference.pdf (accessed on 23 November 2017).
- Wilcoxon, F. Individual comparisons of grouped data by ranking methods. J. Econ. Entomol.
**1946**, 39, 269. [Google Scholar] [CrossRef] [PubMed] - Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica
**1969**, 37, 424. [Google Scholar] [CrossRef] - Kaufmann, R.; Stern, D. Evidence for human influence on climate from hemispheric temperature relations. Nature
**1997**, 388, 39–44. [Google Scholar] [CrossRef] - Bodenhofer, U.; Krone, M.; Klawonn, F. Testing noisy numerical data for monotonic association. Inf. Sci.
**2013**, 245, 21–37. [Google Scholar] [CrossRef]

**Figure 1.**Simulation VV cycle [10].

**Figure 2.**System diagram of the SDL model. The complete model can be reviewed in [36]; the figure only presents the first level of the SDL model that depicts the main blocks that interact in the model (the environment, the building, the compensation elements and the waste treatment systems).

**Figure 3.**Example of numerical results of the energy consumption depending on the building orientation obtained directly from the model output.

**Figure 5.**Sensor system. The SECCIÓN CAMARA (section or the room 1, on the left and 2, on the right) shows the section of the two rooms with the location of the sensor systems, i.e., red dots.

**Figure 6.**Distribution of the anemometers. The SECCIÓN CAMARA (section or room 1, on the left and 2, on the right) shows the section of the two rooms with the location of the anemometers, i.e., green dots.

**Figure 7.**General schema of the installation in the Seville building. One can see the first roof (1A) and the second floor (2A), and the different installations used to control the building.

**Figure 8.**System monitoring via the web. On top, the access screen is shown, which allows us to select the first or the second prototype. Once a prototype is selected, one can select the different measurements (temperature, radiation, etc.). On the bottom right is the monitoring distribution for the two floors. (

**a**) Acces screen; (

**b**) External conditions; (

**c**) First floor; (

**d**) Second floor.

**Figure 13.**Plot between System and Model time series for the exterior temperature, (

**a**) depicts the relation between the system and the model temperatures, (

**b**) the data with a logarithmic transformation.

**Table 1.**Reference for the comfort data [33].

Offices | Temp. (°C) | % HR |

Summer Inside | 26 | 45–60 |

Winter Inside | 21 | 40–50 |

Dwellings | Temp. (°C) | % HR |

Summer Inside | 25 | 50 |

Winter Inside | 21 | 50 |

**Table 2.**Glass materials used in the simulation models. Source [35].

Name Glass Material | Concept | Solar Transmission (SHGC) | U (W/m^{2}·K) | Direct Solar Transmission | Light Transmission |
---|---|---|---|---|---|

FachTe_Glass_FV—SHGC 0.1, Light transmision 0.1, U 1.1 | photovoltaic plate Schott | 0.1 | 1.1 | -- | 0.1 |

FachTe_Glass_6-8-6 | double glass | 0.5 | 3 | 0.373 | 0.5 |

FachTe_Glass_3-8-3 | normal glass | 0.828 | 3.087 | 0.813 | 0.839 |

FachTe_Glass_10-12-10 | low-e glass | 0.559 | 1.89 | 0.418 | 0.71 |

FachTe_Glass_6-13-6 | solar control glass 6 + 12 + 6 | 0.168 | 1.672 | 0.087 | 0.114 |

FachTe_Glass_6 | simple glass | 0.819 | 5.718 | 0.775 | 0.881 |

Description | Materials (from Outside to Inside) | Thickness (cm) |
---|---|---|

Exterior | (sheet metal + camera air + battens) + insulation + pre-stressed wooden panel | 0.3 + 5 + 8 + 10 |

Interior | Insulation + wood panel + finish | 8 + 1.5 + 1.5 |

Ceiling | Sheet + camera air + insulation + waterproof sheet + panel wood freestanding | 0.5 + 5 + 20 + 0.3 + 10 |

Door | Access for service space | -- |

Foundation | Wood base + wood leveling screed | variable |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fonseca i Casas, P.; Fonseca i Casas, A.; Garrido-Soriano, N.; Godoy, A.; Pujols, W.-C.; Garcia, J.
Solution Validation for a Double Façade Prototype. *Energies* **2017**, *10*, 2013.
https://doi.org/10.3390/en10122013

**AMA Style**

Fonseca i Casas P, Fonseca i Casas A, Garrido-Soriano N, Godoy A, Pujols W-C, Garcia J.
Solution Validation for a Double Façade Prototype. *Energies*. 2017; 10(12):2013.
https://doi.org/10.3390/en10122013

**Chicago/Turabian Style**

Fonseca i Casas, Pau, Antoni Fonseca i Casas, Nuria Garrido-Soriano, Alfonso Godoy, Wendys-Carolina Pujols, and Jesus Garcia.
2017. "Solution Validation for a Double Façade Prototype" *Energies* 10, no. 12: 2013.
https://doi.org/10.3390/en10122013