Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis
Abstract
:1. Introduction
1.1. Constraints of Braking Regulations Worldwide
1.2. Construction and Comparison of Proposed Driving Cycles
1.3. Development of a Chinese City Driving Cycle
2. Powertrain Fundamentals
2.1. Motor Module
2.2. Battery Module
2.3. Module of Vehicle Braking Force Distribution
3. Common Regenerative Braking Strategies
3.1. Serial Strategy
3.2. ECO Strategy
3.3. Racing Strategy Based on Fuzzy Logic Distribution
4. Dynamic Performance and Energy Recovery Analysis
4.1. Straight Braking Test
4.2. Driving Cycle Test
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Metz, L.D. Potential for passenger car energy recovery through the use of kinetic energy recovery systems (KERS). In Proceedings of the SAE 2013 World Congress & Exhibition, Detroit, MI, USA, 16–18 April 2013; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Paganelli, G.; Ercole, G.; Brahma, A. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Rev. 2001, 22, 511–518. [Google Scholar] [CrossRef]
- Gao, Y.; Ehsani, M. Electronic Braking System of EV and HEV-Integration of Regenerative Braking, Automatic Braking Force Control and ABS. Available online: https://doi.org/10.4271/2001-01-2478 (accessed on 3 December 2014).
- Crolla, D.A.; Cao, D. The impact of hybrid and electric powertrains on vehicle dynamics, control systems and energy regeneration. Veh. Syst. Dyn. 2012, 50, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Oleksowicz, S.A.; Burnham, K.J.; Southgate, A.; McCoy, C.; Waite, G.; Hardwick, G.; Harrington, C.; McMurran, R. Regenerative braking strategies, vehicle safety and stability control systems: Critical use-case proposals. Veh. Syst. Dyn. 2013, 51, 684–699. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, C.; Qiu, M.; Li, Y.; Sun, D. Braking energy regeneration control of a fuel cell hybrid electric bus. Energy Convers. Manag. 2013, 76, 1117–1124. [Google Scholar] [CrossRef]
- Xiao, B.; Zeng, X.; Zhang, Z.; Li, B.; Yang, Y. Present status and prospect of the regenerative-braking control strategies of electric automobiles. Auto Electr. Parts 2016, 12, 1–3. [Google Scholar] [CrossRef]
- Martin, R.; Richard, A.U.; Tilo, K.; Markus, L. Combining Regenerative Braking and Anti-Lock Braking for Enhanced Braking Performance and Efficiency. In Proceedings of the SAE 2012 World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012; SAE: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Juan, J.C.A.; Javier, P.F.; Juan, M.V.G.; Juan, A.C.C. Regenerative Intelligent Brake Control for Electric Motorcycles. Energies 2017, 10, 1648. [Google Scholar] [CrossRef]
- Regulation No. 13-H: Uniform Provisions Concerning the Approval of Passenger Cars with Regard to Braking; United Nations: New York, NY, USA, 2014; Volume 97, Available online: https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XI-B-16-13H&chapter=11&lang=en&clang=_en (accessed on 25 March 2014).
- National Highway Traffic Safety Administration. Laboratory Test Procedure for 2005; National Highway Traffic Safety Administration: Washington, DC, USA, 2005. [Google Scholar]
- ECE15+EUDC/NEDC Emission Test Cycles. Available online: https://www.dieselnet.com/standards/cycles/ece_eudc.php (accessed on 15 December 2016).
- EPA U. LA92 Unified Dynamometer Driving Schedule/Emission Standards Reference Guide/US. Available online: https://www3.epa.gov/otaq/standards/lightduty/la92.htm (accessed on 2 March 2017).
- Duran, A.; Earleywine, M. GPS data filtration method for drive cycle analysis applications. In Proceedings of the SAE 2012 World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012; SAE: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Justin, D.K.; Axon, C.J. A robust, data-driven methodology for real-world driving cycle development. Transp. Res. Part D Transp. Environ. 2012, 17, 389–397. [Google Scholar]
- Kamble, S.H.; Mathew, T.V.; Sharma, G.K. Development of real-world driving cycle: Case study of Pune, India. Transp. Res. Part D Transp. Environ. 2009, 14, 132–140. [Google Scholar] [CrossRef]
- Hung, W.T.; Tong, H.Y.; Lee, C.P.; Ha, K.; Pao, L.Y. Development of a practical driving cycle construction methodology: A case study in Hong Kong. Transp. Res. Part D Transp. Environ. 2007, 12, 115–128. [Google Scholar] [CrossRef]
- Haan, P.D.; Keller, M. Real-World Driving Cycles for Emission Measurement: ARTEMIS and Swiss Cycles; Final Reports; ResearchGate: Berlin, Germany, 2001. [Google Scholar]
- Hongwen, H.; Rui, X.; Jinxin, F. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Ruan, J.; Walker, P.D.; Watterson, P.A.; Zhang, N. The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle. Appl. Energy 2016, 183, 1240–1258. [Google Scholar] [CrossRef]
- Genta, G.; Morello, L. The Automotive Chassis Volume 2: System Design; Springer: Dordrecht, The Netherlands, 2009; pp. 239–240. ISBN 978-1-4020-8673-1. [Google Scholar]
- Ehsani, M.; Gao, Y.; Ali, E. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory, and Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420053982. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inform. Contr. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Michels, K.; Klawonn, F. Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers; Springer: Berlin/Heidelberg, Germany, 2006; Volume 200, pp. 1–5, 243–245. [Google Scholar]
- Hájek, P. Metamathematics of Fuzzy Logic, 4th ed.; Springer: Dordrecht, The Netherlands, 1998; Chapter 4; pp. 35–45. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, B.; Lu, H.; Wang, H.; Ruan, J.; Zhang, N. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis. Energies 2017, 10, 1875. https://doi.org/10.3390/en10111875
Xiao B, Lu H, Wang H, Ruan J, Zhang N. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis. Energies. 2017; 10(11):1875. https://doi.org/10.3390/en10111875
Chicago/Turabian StyleXiao, Boyi, Huazhong Lu, Hailin Wang, Jiageng Ruan, and Nong Zhang. 2017. "Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis" Energies 10, no. 11: 1875. https://doi.org/10.3390/en10111875
APA StyleXiao, B., Lu, H., Wang, H., Ruan, J., & Zhang, N. (2017). Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis. Energies, 10(11), 1875. https://doi.org/10.3390/en10111875