# Fire Hazards of Some Modern Solid Fuels

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

## 3. Results and Discussion

## 4. Conclusions

## Conflicts of Interest

## Abbreviations

RDF | Refuse Derived Fuel |

HRR | Heat Release Rate |

## References

- Koseki, H. Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests. Energies
**2011**, 4, 616–627. [Google Scholar] [CrossRef] - Murasawa, N.; Koseki, H. Investigation of Heat Generation from Biomass Fuels. Energies
**2015**, 8, 5143–5158. [Google Scholar] [CrossRef] - British Marine. Available online: http://www.britishmarine.com/information/article.asp?ID=76 (accessed on 14 October 2016).
- Ship Compartment Fires. Available online: https://www.google.com.au/search?q=ship+compartment+fires&espv=2&biw=1024&bih=647&tbm=isch&imgil=Nm8N4AJ8FnUuhM%253A%253BFgIODfVbpqNK9M%253Bhttp%25253A%25252F%25252Fslideplayer.com%25252Fslide%25252F1464269%25252F&source=iu&pf=m&fir=Nm8N4AJ8FnUuhM%253A%252CFgIODfVbpqNK9M%252C_&usg=__fvOLg4xu7tEQJdfv2R0UCWYu9Wc%3D&ved=0ahUKEwj6u_uB6rLNAhXDl5QKHWeLBFkQyjcIPw&ei=feZlV7qJGMOv0gTnlpLIBQ#imgrc=6Df6DlA__1K8VM%3A (accessed on 14 October 2016).
- Guidance on the Carriage of Refuse Derived Fuel (RDF). Available online: http://www.britishmarine.com/information/article.asp?ID=76 (accessed on 14 October 2016).
- Semenov, N.N. On the Theory of Combustion Processes. J. Rus. Phys. Chem. Soc.
**1928**, 60, 247–250. [Google Scholar] - Frank-Kamenetskii, D.A. Temperature Distribution in a Reactive Vessel and the Steady-state Theory of Thermal Explosion. J. Phys. Chem.
**1939**, 13, 738–755. [Google Scholar] - Frank-Kamenetskii, D.A. Diffusion and Heat Transfer in Chemical Kinetics, 4th ed.; Intellect: Dolgoprudny, Russia, 2008; pp. 280–311. [Google Scholar]
- Novozhilov, V. Critical Conditions for Conjugate Thermal Explosion. Combust. Theory Model.
**2008**, 12, 433–449. [Google Scholar] [CrossRef] - Novozhilov, V. Non-Linear Dynamical Model of Compartment Fire Flashover. J. Eng. Math.
**2010**, 67, 387–400. [Google Scholar] [CrossRef] - Novozhilov, V. Thermal Explosion in Oscillating Ambient Conditions. Sci. Rep.
**2016**, 6, 29730. [Google Scholar] [CrossRef] [PubMed] - Karlsson, B.; Quintiere, J.G. Enclosure Fire Dynamics; CRC Press: Boca Raton, FL, USA, 2000; pp. 181–225. [Google Scholar]
- Novozhilov, V. A Brief Note on the Smoke Filling Equation. Fire Saf. J.
**2012**, 47, 16–17. [Google Scholar] [CrossRef] - Novozhilov, V.; Moghtaderi, B.; Fletcher, D.F.; Kent, J.H. Computational Fluid Dynamics Modelling of Wood Combustion. Fire Saf. J.
**1996**, 27, 69–84. [Google Scholar] [CrossRef] - Drysdale, D. An Introduction to Fire Dynamics, 3rd ed.; Wiley: Chichester, UK, 2011; pp. 35–82. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 5th ed.; Wiley: New York, NY, USA, 2002; pp. 700–858. [Google Scholar]
- Landau, L.D.; Lifshits, E.M. Fluid Mechanics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1987; pp. 1–541. [Google Scholar]
- Delichatsios, M.A. A Phenomenological Model for Smoke-Point and Soot Formation in Laminar Flames. Combust. Sci. Technol.
**1994**, 100, 283–298. [Google Scholar] [CrossRef] - Delichatsios, M.A. Smoke Yields from Turbulent Buoyant Jet Flames. Fire Saf. J.
**1993**, 20, 299–311. [Google Scholar] [CrossRef]

**Figure 2.**Dynamics of the smoke layer interface in non-dimensional variables. The arrow points towards an increase of the non-dimensional heat release rate for each of the curves: $\dot{Q}=4.55\times {10}^{-3}$; $\dot{Q}=9.10\times {10}^{-3}$ and $\dot{Q}=1.82\times {10}^{-2}$.

**Figure 3.**Dynamics of the smoke (upper layer) temperature in non-dimensional variables. The arrow points towards an increase of the non-dimensional heat release rate for each of the curves: $\dot{Q}=4.55\times {10}^{-3}$; $\dot{Q}=9.10\times {10}^{-3}$ and $\dot{Q}=1.82\times {10}^{-2}$.

**Figure 5.**Influence of the radiation Biot number on ignition time. Both variables are non-dimensional. The arrow points towards an increase of the parameter $E$ for each of the curves: $E=3.79\times {10}^{5}$; $E=1.14\times {10}^{6}$ and $E=1.90\times {10}^{6}$.

**Figure 6.**Dependence of the ignition time on the fuel soot yield. Both variables are non-dimensional.

**Figure 7.**Dimensional ignition time as a function of the dimensional initial fire HRR. $\tilde{H}=3\text{\hspace{0.17em}}\mathrm{m}$; $\tilde{S}=16\text{\hspace{0.17em}}{\mathrm{m}}^{2}$.

**Figure 8.**Dependence of the dimensional ignition time on the non-dimensional fuel soot yield. $\tilde{H}=3\text{\hspace{0.17em}}\mathrm{m}$; $\tilde{S}=16\text{\hspace{0.17em}}{\mathrm{m}}^{2}$.

**Figure 9.**Influence of the height clearance on the dimensional ignition time. The arrow points towards an increase of the fuel area $S$ for each of the curves: $S=12\text{\hspace{0.17em}}{\mathrm{m}}^{2}$; $S=24\text{\hspace{0.17em}}{\mathrm{m}}^{2}$; $S=48\text{\hspace{0.17em}}{\mathrm{m}}^{2}$ and $S=100\text{\hspace{0.17em}}{\mathrm{m}}^{2}$.

© 2017 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Novozhilov, V.
Fire Hazards of Some Modern Solid Fuels. *Energies* **2017**, *10*, 113.
https://doi.org/10.3390/en10010113

**AMA Style**

Novozhilov V.
Fire Hazards of Some Modern Solid Fuels. *Energies*. 2017; 10(1):113.
https://doi.org/10.3390/en10010113

**Chicago/Turabian Style**

Novozhilov, Vasily.
2017. "Fire Hazards of Some Modern Solid Fuels" *Energies* 10, no. 1: 113.
https://doi.org/10.3390/en10010113