Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of the Patient Cohort at Transfer
2.2. Analyses of Genetic Variants and Telomere Length
2.3. Analysis of AA-Susceptible HLA and Other Single Nucleotide Polymorphisms (SNP)
2.4. Response to Salvage Treatments
3. Discussion
4. Materials and Methods
4.1. Identification of Variants by Whole-Exome Sequencing (WES)
4.2. Determination of HLA Haplotypes and SNP
4.3. Terminal Restriction Fragment (TRF) Assay
4.4. Conditioning Regimen and GVHD Prophylaxis for Haploidentical PBSCT
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Giudice, V.; Cardamone, C.; Triggiani, M.; Selleri, C. Bone marrow failure syndromes, overlapping diseases with a common cytokine signature. Int. J. Mol. Sci. 2021, 22, 705. [Google Scholar] [CrossRef] [PubMed]
- Young, N.S. Aplastic anemia. N. Engl. J. Med. 2018, 379, 1643–1656. [Google Scholar] [CrossRef]
- Gonzalez-Casas, R.; Garcia-Buey, L.; Jones, E.A.; Gisbert, J.P.; Moreno-Otero, R. Systematic review: Hepatitis-associated aplastic anaemia—A syndrome associated with abnormal immunological function. Aliment. Pharmacol. Ther. 2009, 30, 436–443. [Google Scholar] [CrossRef] [PubMed]
- McReynolds, L.J.; Rafati, M.; Wang, Y.; Ballew, B.J.; Kim, J.; Williams, V.V.; Zhou, W.; Hendricks, R.M.; Dagnall, C.; Freedman, N.D.; et al. Genetic testing in severe aplastic anemia is required for optimal hematopoietic cell transplant outcomes. Blood 2022, 140, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.L.; Lin, K.H.; Chen, B.W.; Su, S.; Lin, D.T.; Chuu, W.M.; Lin, K.S.; Huang, L.M.; Lee, C.Y. Long-term observation of pediatric aplastic anemia. J. Formos. Med. Assoc. 1992, 91, 390–395. [Google Scholar] [PubMed]
- Camitta, B.M.; Thomas, E.D.; Nathan, D.G.; Santos, G.; Gordon-Smith, E.C.; Gale, R.P.; Rappeport, J.M.; Storb, R. Severe aplastic anemia: A prospective study of the effect of early marrow transplantation on acute mortality. Blood 1976, 48, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Scheinberg, P. Acquired severe aplastic anaemia: How medical therapy evolved in the 20th and 21st centuries. Br. J. Haematol. 2021, 194, 954–969. [Google Scholar] [CrossRef]
- Dufour, C.; Pillon, M.; Passweg, J.; Socie, G.; Bacigalupo, A.; Franceschetto, G.; Carraro, E.; Oneto, R.; Risitano, A.M.; Peffault de Latour, R.; et al. Outcome of aplastic anemia in adolescence: A survey of the severe aplastic anemia working party of the european group for blood and marrow transplantation. Haematologica 2014, 99, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Dufour, C.; Pillon, M.; Socie, G.; Rovo, A.; Carraro, E.; Bacigalupo, A.; Oneto, R.; Passweg, J.; Risitano, A.; Tichelli, A.; et al. Outcome of aplastic anaemia in children. A study by the severe aplastic anaemia and paediatric disease working parties of the European group blood and bone marrow transplant. Br. J. Haematol. 2015, 169, 565–573. [Google Scholar] [CrossRef]
- Yoshida, N.; Kobayashi, R.; Yabe, H.; Kosaka, Y.; Yagasaki, H.; Watanabe, K.; Kudo, K.; Morimoto, A.; Ohga, S.; Muramatsu, H.; et al. First-line treatment for severe aplastic anemia in children: Bone marrow transplantation from a matched family donor versus immunosuppressive therapy. Haematologica 2014, 99, 1784–1791. [Google Scholar] [CrossRef]
- Samarasinghe, S.; Steward, C.; Hiwarkar, P.; Saif, M.A.; Hough, R.; Webb, D.; Norton, A.; Lawson, S.; Qureshi, A.; Connor, P.; et al. Excellent outcome of matched unrelated donor transplantation in paediatric aplastic anaemia following failure with immunosuppressive therapy: A United Kingdom multicentre retrospective experience. Br. J. Haematol. 2012, 157, 339–346. [Google Scholar] [CrossRef]
- Bacigalupo, A.; Sica, S. Alternative donor transplants for severe aplastic anemia: Current experience. Semin. Hematol. 2016, 53, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.L.; Huang, X.J. Haploidentical stem cell transplantation for aplastic anemia: The current advances and future challenges. Bone Marrow Transplant. 2021, 56, 779–785. [Google Scholar] [CrossRef] [PubMed]
- DeZern, A.E.; Brodsky, R.A. Haploidentical donor bone marrow transplantation for severe aplastic anemia. Hematol. Oncol. Clin. N. Am. 2018, 32, 629–642. [Google Scholar] [CrossRef] [PubMed]
- DeZern, A.E.; Eapen, M.; Wu, J.; Talano, J.A.; Solh, M.; Davila Saldana, B.J.; Karanes, C.; Horwitz, M.E.; Mallhi, K.; Arai, S.; et al. Haploidentical bone marrow transplantation in patients with relapsed or refractory severe aplastic anaemia in the USA (BMT CTN 1502): A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2022, 9, e660–e669. [Google Scholar] [CrossRef]
- DeZern, A.E.; Zahurak, M.L.; Symons, H.J.; Cooke, K.R.; Rosner, G.L.; Gladstone, D.E.; Huff, C.A.; Swinnen, L.J.; Imus, P.; Borrello, I.; et al. Haploidentical BMT for severe aplastic anemia with intensive GVHD prophylaxis including posttransplant cyclophosphamide. Blood Adv. 2020, 4, 1770–1779. [Google Scholar] [CrossRef]
- Rogers, Z.R.; Nakano, T.A.; Olson, T.S.; Bertuch, A.A.; Wang, W.; Gillio, A.; Coates, T.D.; Chawla, A.; Castillo, P.; Kurre, P.; et al. Immunosuppressive therapy for pediatric aplastic anemia: A North American pediatric aplastic anemia consortium study. Haematologica 2019, 104, 1974–1983. [Google Scholar] [CrossRef] [Green Version]
- Ip, P.P.; Fang, L.H.; Shen, Y.L.; Tung, K.C.; Lai, M.T.; Juan, L.Y.; Chen, L.Y.; Chen, R.L. Evolution of graves’ disease during immune reconstitution following nonmyeloablative haploidentical peripheral blood stem cell transplantation in a boy carrying germline SAMD9L and FLT3 variants. Int. J. Mol. Sci. 2022, 23, 9494. [Google Scholar] [CrossRef]
- Arends, C.M.; Galan-Sousa, J.; Hoyer, K.; Chan, W.; Jager, M.; Yoshida, K.; Seemann, R.; Noerenberg, D.; Waldhueter, N.; Fleischer-Notter, H.; et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia 2018, 32, 1908–1919. [Google Scholar] [CrossRef]
- Feldkamp, J.D.; Vetter, V.M.; Arends, C.M.; Lang, T.J.L.; Bullinger, L.; Damm, F.; Demuth, I.; Frick, M. Clonal hematopoiesis of indeterminate potential-related epigenetic age acceleration correlates with clonal hematopoiesis of indeterminate potential clone size in patients with high morbidity. Haematologica 2022, 107, 1703–1708. [Google Scholar] [CrossRef]
- Yoshizato, T.; Dumitriu, B.; Hosokawa, K.; Makishima, H.; Yoshida, K.; Townsley, D.; Sato-Otsubo, A.; Sato, Y.; Liu, D.; Suzuki, H.; et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med. 2015, 373, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.Z.; Du, M.; Peng, J.; Long, J.X.; Zheng, C.J.; Tan, Y.; Li, L.J.; Chen, H.Y.; Qing, C.; Pang, Y.Y.; et al. Associations between the HLA-A/B/DRB1 polymorphisms and aplastic anemia: Evidence from 17 case-control studies. Hematology 2018, 23, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Wang, T.J.; Li, H.X.; Wu, D.; Du, D.; Wu, J.H.; Shang, L.X.; Chen, L.; Wang, M.N.; Wang, X.F. Association of HLA class II (-DRB1,-DQB1,-DPB1) alleles and haplotypes on susceptibility to aplastic anemia in northern Chinese Han. Hum. Immunol. 2020, 81, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Savage, S.A.; Viard, M.; O’HUigin, C.; Zhou, W.; Yeager, M.; Li, S.A.; Wang, T.; Ramsuran, V.; Vince, N.; Vogt, A.; et al. Genome-wide association study identifies HLA-DPB1 as a significant risk factor for severe aplastic anemia. Am. J. Hum. Genet. 2020, 106, 264–271. [Google Scholar] [CrossRef]
- Savage, S.A.; Calado, R.T.; Xin, Z.T.; Ly, H.; Young, N.S.; Chanock, S.J. Genetic variation in telomeric repeat binding factors 1 and 2 in aplastic anemia. Exp. Hematol. 2006, 34, 664–671. [Google Scholar] [CrossRef]
- Li, B.; Guo, L.; Zhang, Y.; Xiao, Y.; Wu, M.; Zhou, L.; Chen, S.; Yang, L.; Lu, X.; Li, Y. Molecular alterations in the TCR signaling pathway in patients with aplastic anemia. J. Hematol. Oncol. 2016, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Miao, M.; Qiu, Y.; Qin, Z.; Wang, J.; Jiang, Y.; Ming, Z.; Zhang, X. Association between polymorphisms in PDCD1 gene and aplastic anemia in Chinese Han population. Leuk. Lymphoma 2013, 54, 2251–2254. [Google Scholar] [CrossRef]
- Chang, H.; Zeng, F.; Zhang, J.Y.; Mu, X.Y.; Meng, W.T.; Ma, H.B.; Liu, T. Association of the interferon-gamma single nucleotide polymorphism +874(T/A) with response to immunosuppressive therapy in patients with severe aplastic anemia. Blood Cells Mol. Dis. 2010, 45, 313–316. [Google Scholar] [CrossRef]
- Rehman, S.; Saba, N.; Naz, M.; Ahmed, P.; Munir, S.; Sajjad, S.; Tabassum, S.; Naseem, L. Single-nucleotide polymorphisms of FAS and FASL genes and risk of idiopathic aplastic anemia. Immunol. Investig. 2018, 47, 484–491. [Google Scholar] [CrossRef]
- In, J.W.; Lee, N.; Roh, E.Y.; Shin, S.; Park, K.U.; Song, E.Y. Association of aplastic anemia and FoxP3 gene polymorphisms in Koreans. Hematology 2017, 22, 149–154. [Google Scholar] [CrossRef]
- Svahn, J.; Capasso, M.; Lanciotti, M.; Marrone, A.; Haupt, R.; Bacigalupo, A.; Pongiglione, C.; Boschetto, L.; Longoni, D.; Pillon, M.; et al. The polymorphisms −318C > T in the promoter and 49A > G in exon 1 of CTLA4 and the risk of aplastic anemia in a caucasian population. Bone Marrow Transplant. 2005, 35 (Suppl. 1), S89–S92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsley, D.M.; Scheinberg, P.; Winkler, T.; Desmond, R.; Dumitriu, B.; Rios, O.; Weinstein, B.; Valdez, J.; Lotter, J.; Feng, X.; et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N. Engl. J. Med. 2017, 376, 1540–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abboud, R.; Keller, J.; Slade, M.; DiPersio, J.F.; Westervelt, P.; Rettig, M.P.; Meier, S.; Fehniger, T.A.; Abboud, C.N.; Uy, G.L.; et al. Severe cytokine-release syndrome after T cell-replete peripheral blood haploidentical donor transplantation is associated with poor survival and anti-IL-6 therapy is safe and well tolerated. Biol. Blood Marrow Transplant. 2016, 22, 1851–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertaina, A.; Abraham, A.; Bonfim, C.; Cohen, S.; Purtill, D.; Ruggeri, A.; Weiss, D.; Wynn, R.; Boelens, J.J.; Prockop, S.; et al. An ISCT stem cell engineering committee position statement on immune reconstitution: The importance of predictable and modifiable milestones of immune reconstitution to transplant outcomes. Cytotherapy 2022, 24, 385–392. [Google Scholar] [CrossRef]
- Pagliuca, S.; Gurnari, C.; Awada, H.; Kishtagari, A.; Kongkiatkamon, S.; Terkawi, L.; Zawit, M.; Guan, Y.; LaFramboise, T.; Jha, B.K.; et al. The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders. Blood 2021, 138, 2781–2798. [Google Scholar] [CrossRef]
- Zaimoku, Y.; Patel, B.A.; Adams, S.D.; Shalhoub, R.; Groarke, E.M.; Lee, A.A.C.; Kajigaya, S.; Feng, X.; Rios, O.J.; Eager, H.; et al. HLA associations, somatic loss of HLA expression, and clinical outcomes in immune aplastic anemia. Blood 2021, 138, 2799–2809. [Google Scholar] [CrossRef]
- Sportoletti, P.; Sorcini, D.; Falini, B. BCOR gene alterations in hematologic diseases. Blood 2021, 138, 2455–2468. [Google Scholar] [CrossRef]
- Gurnari, C.; Pagliuca, S.; Prata, P.H.; Galimard, J.E.; Catto, L.F.B.; Larcher, L.; Sebert, M.; Allain, V.; Patel, B.J.; Durmaz, A.; et al. Clinical and molecular determinants of clonal evolution in aplastic anemia and paroxysmal nocturnal hemoglobinuria. J. Clin. Oncol. 2022, JCO2200710. [Google Scholar] [CrossRef]
- Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder, R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2008, 14, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Wachsmuth, L.P.; Patterson, M.T.; Eckhaus, M.A.; Venzon, D.J.; Gress, R.E.; Kanakry, C.G. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J. Clin. Investig. 2019, 129, 2357–2373. [Google Scholar] [CrossRef]
- Prata, P.H.; Eikema, D.J.; Afansyev, B.; Bosman, P.; Smiers, F.; Diez-Martin, J.L.; Arrais-Rodrigues, C.; Koc, Y.; Poire, X.; Sirvent, A.; et al. Haploidentical transplantation and posttransplant cyclophosphamide for treating aplastic anemia patients: A report from the EBMT severe aplastic anemia working party. Bone Marrow Transplant. 2020, 55, 1050–1058. [Google Scholar] [CrossRef]
- Arcuri, L.J.; Nabhan, S.K.; Cunha, R.; Nichele, S.; Ribeiro, A.A.F.; Fernandes, J.F.; Daudt, L.E.; Rodrigues, A.L.M.; Arrais-Rodrigues, C.; Seber, A.; et al. Impact of CD34 cell dose and conditioning regimen on outcomes after haploidentical donor hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for relapsed/refractory severe aplastic anemia. Biol. Blood Marrow Transplant. 2020, 26, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.L.; Deeg, H.J.; Seidel, K.; Anasetti, C.; Doney, K.; Sanders, J.; Sullivan, K.M.; Storb, R. Bone marrow transplantation for severe aplastic anemia from genotypically HLA-nonidentical relatives. An update of the Seattle experience. Transplantation 1996, 61, 54–61. [Google Scholar] [CrossRef]
- Scheinberg, P.; Nunez, O.; Weinstein, B.; Scheinberg, P.; Biancotto, A.; Wu, C.O.; Young, N.S. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N. Engl. J. Med. 2011, 365, 430–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimi, A.; Niemeyer, C.M.; Fuhrer, M.M.; Strahm, B. Comparison of the efficacy of rabbit and horse antithymocyte globulin for the treatment of severe aplastic anemia in children. Blood 2013, 121, 860–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Admiraal, R.; van Kesteren, C.; Jol-van der Zijde, C.M.; Lankester, A.C.; Bierings, M.B.; Egberts, T.C.; van Tol, M.J.; Knibbe, C.A.; Bredius, R.G.; Boelens, J.J. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: A multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015, 2, e194–e203. [Google Scholar] [CrossRef] [PubMed]
- Langenhorst, J.B.; van Kesteren, C.; van Maarseveen, E.M.; Dorlo, T.P.C.; Nierkens, S.; Lindemans, C.A.; de Witte, M.A.; van Rhenen, A.; Raijmakers, R.; Bierings, M.; et al. Fludarabine exposure in the conditioning prior to allogeneic hematopoietic cell transplantation predicts outcomes. Blood Adv. 2019, 3, 2179–2187. [Google Scholar] [CrossRef]
- Bacigalupo, A.; Socie, G.; Hamladji, R.M.; Aljurf, M.; Maschan, A.; Kyrcz-Krzemien, S.; Cybicka, A.; Sengelov, H.; Unal, A.; Beelen, D.; et al. Current outcome of HLA identical sibling versus unrelated donor transplants in severe aplastic anemia: An EBMT analysis. Haematologica 2015, 100, 696–702. [Google Scholar] [CrossRef]
- Schrezenmeier, H.; Passweg, J.R.; Marsh, J.C.; Bacigalupo, A.; Bredeson, C.N.; Bullorsky, E.; Camitta, B.M.; Champlin, R.E.; Gale, R.P.; Fuhrer, M.; et al. Worse outcome and more chronic GVHD with peripheral blood progenitor cells than bone marrow in HLA-matched sibling donor transplants for young patients with severe acquired aplastic anemia. Blood 2007, 110, 1397–1400. [Google Scholar] [CrossRef]
- Granata, A.; Furst, S.; Bramanti, S.; Legrand, F.; Sarina, B.; Harbi, S.; De Philippis, C.; Faucher, C.; Chabannon, C.; Lemarie, C.; et al. Peripheral blood stem cell for haploidentical transplantation with post-transplant high dose cyclophosphamide: Detailed analysis of 181 consecutive patients. Bone Marrow Transplant. 2019, 54, 1730–1737. [Google Scholar] [CrossRef]
- Castagna, L.; Crocchiolo, R.; Furst, S.; Bramanti, S.; El Cheikh, J.; Sarina, B.; Granata, A.; Mauro, E.; Faucher, C.; Mohty, B.; et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2014, 20, 724–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, K.; Pagliuca, A.; Bradstock, K.; Noriega, V.; Potter, V.; Streetly, M.; McLornan, D.; Kazmi, M.; Marsh, J.; Kwan, J.; et al. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol. Blood Marrow Transplant. 2014, 20, 890–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clay, J.; Kulasekararaj, A.G.; Potter, V.; Grimaldi, F.; McLornan, D.; Raj, K.; de Lavallade, H.; Kenyon, M.; Pagliuca, A.; Mufti, G.J.; et al. Nonmyeloablative peripheral blood haploidentical stem cell transplantation for refractory severe aplastic anemia. Biol. Blood Marrow Transplant. 2014, 20, 1711–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, I.; Bonfim, C.; Pasquini, R.; Funke, V.; Pereira, N.F.; Rocha, V.; Novis, Y.; Arrais, C.; Colturato, V.; de Souza, M.P.; et al. Haploidentical BMT and post-transplant Cy for severe aplastic anemia: A multicenter retrospective study. Bone Marrow Transplant. 2015, 50, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Eapen, M.; Zhang, M.J.; Tang, X.Y.; Lee, S.J.; Fei, M.W.; Wang, H.L.; Hebert, K.M.; Arora, M.; Chhabra, S.; Devine, S.M.; et al. Hematopoietic cell transplantation with cryopreserved grafts for severe aplastic anemia. Biol. Blood Marrow Transplant. 2020, 26, e161–e166. [Google Scholar] [CrossRef]
- Bolan, C.D.; Leitman, S.F.; Griffith, L.M.; Wesley, R.A.; Procter, J.L.; Stroncek, D.F.; Barrett, A.J.; Childs, R.W. Delayed donor red cell chimerism and pure red cell aplasia following major ABO-incompatible nonmyeloablative hematopoietic stem cell transplantation. Blood 2001, 98, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.R.; Wang, W.J.; Cheng, Y.F.; Zhang, Y.Y.; Mo, X.D.; Han, T.T.; Wang, F.R.; Yan, C.H.; Sun, Y.Q.; Chen, Y.H.; et al. Impact of ABO incompatibility on outcomes after haploidentical hematopoietic stem cell transplantation for severe aplastic anemia. Bone Marrow Transplant. 2020, 55, 1068–1075. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Ka, S.; Lee, S.; Hong, J.; Cho, Y.; Sung, J.; Kim, H.N.; Kim, H.L.; Jung, J. HLAscan: Genotyping of the HLA region using next-generation sequencing data. BMC Bioinform. 2017, 18, 258. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Y.; Majerska, J.; Lingner, J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev. 2013, 27, 2099–2108. [Google Scholar] [CrossRef]
- Gohring, J.; Fulcher, N.; Jacak, J.; Riha, K. TeloTool: A new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. Nucleic Acids Res. 2014, 42, e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenhorst, J.B.; Dorlo, T.P.C.; van Maarseveen, E.M.; Nierkens, S.; Kuball, J.; Boelens, J.J.; van Kesteren, C.; Huitema, A.D.R. Population pharmacokinetics of fludarabine in children and adults during conditioning prior to allogeneic hematopoietic cell transplantation. Clin. Pharm. 2019, 58, 627–637. [Google Scholar] [CrossRef] [PubMed]
Case No. | Age (y/o) a, Sex | AA Severity b | Preceding Disorder | Prior Treatment before Transfer | Adverse Events at Transfer c | Salvage Treatment | Response of AA d | Subtype of AA |
---|---|---|---|---|---|---|---|---|
1 | 19.5, male | moderate | IBD at 19 y/o | Sulfasalazine, Pred | Refractory AA | CSA for 22 months | CR > 6 years | IBD |
2 | 2.5, female | severe | HLH at 2 y/o | rATG, CSA | Relapsed AA at 10.5 y/o | W&W | VGPR > 40 months | SAMD9L mutation |
3 | 14, female | severe | No | rATG, CSA | Alopecia areata at 15.5 y/o | CSA for 8 months | CR > 9 years | Alopecia areata |
4 | 13.5, male | severe | No | rATG, CSA | Relapsed AA at 15 y/o | CSA for 2.5 years | CR > 6 years | Idiopathic |
5 | 10.5, male | severe | No | rATG/CSA x 2, herbs | Refractory AA | MUD-BMT | CR > 9 years | Idiopathic |
6 | 17.5, female | severe | No | MSD-PBSCT | Evans syndrome at 19.5 y/o | Pred, CSA, MMF | CR > 8 years | Evans syndrome |
7 | 10, male | severe | No | rATG/CSA x2 | Refractory AA | Haplo-PBSCT | CR > 7 years | Idiopathic |
8 | 9, male | severe | No | herbs | Refractory AA | Haplo-PBSCT | CR > 32 months | Idiopathic |
9 | 7, male | severe | No | rATG/CSA/EPAG | Refractory AA | Haplo-PBSCT | CR e > 26 months | SAMD9L mutation |
10 | 14, female | severe | No | CSA/EPAG | Refractory AA | Haplo-PBSCT | CR > 23 months | Idiopathic |
11 | 4, male | severe | Hepatitis at 3.5 y/o | rATG/CSA/EPAG | Refractory AA | Haplo-PBSCT | CR >22 months | Hepatitis |
12 | 11, female | severe | No | CSA/EPAG | Refractory AA | Haplo-PBSCT | CR > 4 months | Idiopathic |
Risky HLA Alleles [22,23] | Patient Carrying Risky HLA Alleles | Protective HLA Alleles [22] | Patient Carrying Protective HLA Alleles |
---|---|---|---|
HLA-A*02 | Cases 6, 8, 9, 10 | HLA-DRB1*03:01 | Case 11 |
HLA-DRB1*0407 | none | HLA-DRB1*04:06 | none |
HLA-DRB1*15 | Case 1 | HLA-DRB1*08:02 | none |
HLA-DRB1*15:01 | Case 4 | HLA-DRB1*13:01 | Case 11 |
HLA-DQB1*06:02 | Case 4 | HLA-DRB1*13:02 | none |
HLA-DRB1*14 | Case 4 |
Case No. | Time from AA Diagnosis to HSCT | Donor (Age, y/o) | TNC Infused (108/kg) | CD34+ Cells Infused (106/kg) | CD3+ Cells Infused (108/kg) | ABORh D—R | CMV Status D—R | Neutrophil Engraftment a | Red Cell Engraftment b | Platelet Engraftment c | Complete Response d |
---|---|---|---|---|---|---|---|---|---|---|---|
7 | 17 months | Father (48) | 12.9 | 10.8 | 3.32 | Opos—Bpos | pos—pos | Day +16 | Day +1 | Day +13 | Day +20 |
8 | 3 months | Father (45) | 13.5 | 12.6 | 2.92 | Bpos—Opos | neg—pos | Day +13 | Day +131 | Day +16 | Day +158 |
9 | 10 months | Father (49) | 10.8 | 14.0 | 1.29 | Opos—Bpos | pos—pos | Day +14 | Day +11 | Day +16 | Day +18 |
10 | 60 months | Mother (46) | 9.8 | 9.8 | 0.67 | Opos—Bpos | neg—pos | Day +18 | Day +25 | Day +23 | Day +77 |
11 | 17 months | Brother (16) | 18.0 | 16.6 | 4.07 | Opos—Opos | pos—pos | Day +13 | Day +7 | Day +17 | Day +17 |
12 | 48 months | Father (47) | 19.8 | 8.8 | 5.64 | Opos—Bpos | pos—pos | Day +17 | Day +9 | Day +22 | Day +77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.-L.; Ip, P.P.; Shaw, J.-j.; Wang, Y.-H.; Fan, L.-H.; Shen, Y.-L.; Joseph, N.A.; Chen, T.-E.; Chen, L.-Y. Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia. Int. J. Mol. Sci. 2022, 23, 15192. https://doi.org/10.3390/ijms232315192
Chen R-L, Ip PP, Shaw J-j, Wang Y-H, Fan L-H, Shen Y-L, Joseph NA, Chen T-E, Chen L-Y. Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia. International Journal of Molecular Sciences. 2022; 23(23):15192. https://doi.org/10.3390/ijms232315192
Chicago/Turabian StyleChen, Rong-Long, Peng Peng Ip, Jy-juinn Shaw, Yun-Hsin Wang, Li-Hua Fan, Yi-Ling Shen, Nithila A. Joseph, Tsen-Erh Chen, and Liuh-Yow Chen. 2022. "Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia" International Journal of Molecular Sciences 23, no. 23: 15192. https://doi.org/10.3390/ijms232315192
APA StyleChen, R.-L., Ip, P. P., Shaw, J.-j., Wang, Y.-H., Fan, L.-H., Shen, Y.-L., Joseph, N. A., Chen, T.-E., & Chen, L.-Y. (2022). Anti-Thymocyte Globulin (ATG)-Free Nonmyeloablative Haploidentical PBSCT Plus Post-Transplantation Cyclophosphamide Is a Safe and Efficient Treatment Approach for Pediatric Acquired Aplastic Anemia. International Journal of Molecular Sciences, 23(23), 15192. https://doi.org/10.3390/ijms232315192