Modeling of Perforated Piezoelectric Plates
Abstract
:1. Introduction
2. Setting of the Problem
2.1. Geometric of the Medium
2.2. Model Problem
3. The Thin Plate Behavior
3.1. Limit as the Thickness Tends to Zero
3.2. Limit as the Period Tends to Zero
4. Final Remarks
Funding
Conflicts of Interest
References
- Ikeda, T. Fundamentals of Piezoelectricity; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Rahmoune, M. Plaques Intelligentes piézoélectriques, modélisation et Application au contrôle santé. Ph.D. Thesis, University of Paris 6, Paris, France, 1997. (In French). [Google Scholar]
- Rahmoune, M.; Benjeddou, A.; Ohayon, R.; Osmont, D. New Thin Piezoelectric Plate Model. J. Intell. Mater. Syst. Struct. 1998, 9, 1017–1029. [Google Scholar] [CrossRef]
- Sène, A. Modélisation Asymptotique de Plaque: Contrôlabilité Exacte Frontière, Piézoélectricité. Ph.D. Thesis, University of Grenoble I, Saint-Martin-d’Hères, France, 1999. (In French). [Google Scholar]
- Sène, A. Modelling piezoeletric static thin plates. Asymptot. Anal. 2001, 25, 1–20. [Google Scholar]
- Ghergu, M.; Griso, G.; Mechkour, H.; Miara, B. Homogenization of thin piezoelectric perforated shells. ESAIM Math. Model. Numer. Anal. 2007, 41, 875–895. [Google Scholar] [CrossRef]
- Kauffman, R.; Saint Jean-Paulin, J. Elasticity of a Perforated Plate with Very Different Elasticity Coeffficients. Gakuto Int. Ser. Math. Sci. Appl. 1997, 9, 225–239. [Google Scholar]
- Figueiredo, N.I.M.; Leal, F.C.M. A piezoelectric anisotropic plate model. Asymptot. Anal. 2005, 44, 327–346. [Google Scholar]
- Cioranescu, D.; Donato, P. An Introduction to Homogenization; Oxford Lecture Series in Mathematics and its Applications; Oxford University Press: Oxford, UK, 1999; Volume 17. [Google Scholar]
- Bensoussan, A.; Lions, J.L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Mechkour, H. Homogénéisation et Simulation Numérique de Structures Piézoélectriques Perforées et Laminées. Ph.D. Thesis, University of Marne-La-Vallée, Marne-La-Vallée, France, 2004. (In French). [Google Scholar]
- Mechkour, H. Two-scale homogenization of piezoelectric perforated structures. Mathematics 2022, 10, 1455. [Google Scholar] [CrossRef]
- Nguetseng, G. A general convergence result for a functionnal related to the theory of homogenization. SIAM J. Math. Anal. 1989, 20, 608–623. [Google Scholar] [CrossRef]
- Allaire, G. Homogenization and two scale-convergence. SIAM J. Math. Anal. 1992, 23, 1482–1518. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechkour, H. Modeling of Perforated Piezoelectric Plates. Math. Comput. Appl. 2022, 27, 100. https://doi.org/10.3390/mca27060100
Mechkour H. Modeling of Perforated Piezoelectric Plates. Mathematical and Computational Applications. 2022; 27(6):100. https://doi.org/10.3390/mca27060100
Chicago/Turabian StyleMechkour, Houari. 2022. "Modeling of Perforated Piezoelectric Plates" Mathematical and Computational Applications 27, no. 6: 100. https://doi.org/10.3390/mca27060100
APA StyleMechkour, H. (2022). Modeling of Perforated Piezoelectric Plates. Mathematical and Computational Applications, 27(6), 100. https://doi.org/10.3390/mca27060100