Transcriptomics and the Mediterranean Diet: A Systematic Review
Abstract
:1. Introduction
2. Technical Considerations
3. Transcriptional Analysis of Mediterranean Diet Consumption or Its Components in Human Studies
3.1. Influence of a Mediterranean Diet
3.2. Influence of Monounsaturated vs. Saturated Fatty Acid Containing Diets
3.3. Influence of Monounsaturated vs. n-3 Fatty Acid Containing Diets
3.4. Influence of the Administration of Olive Oil Enriched in Phenolic Compounds
3.5. Influence of the Administration of Isolated Phenolic Compound Extracts
4. Transcriptional Analysis of Mediterranean Diet Consumption or of Its Components in Non-Human Studies
4.1. Influence of Monounsaturated vs. n-3 and n-6 Polyunsaturated Fatty Acid Containing Diets
4.2. Influence of the Administration of Olive Oil Enriched in Phenolic Compounds
4.3. Influence of the Administration of Isolated Phenolic Compound Extracts
4.4. Influence of the Administration of Other Minor Components of Virgin Olive Oil
5. Outlook
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smith, C.E. Plant oils and cardiometabolic risk factors: The role of genetics. Curr. Nutr. Rep. 2012, 1, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Ordovas, J.M. How does the mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms: Gene-diet interactions at the genomic, transcriptomic, and epigenomic levels provide novel insights into new mechanisms. Bioessays 2014, 36, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Salas-Salvado, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fito, M.; Hu, F.B.; Aros, F.; et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the predimed trial: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Arnal, C.; Navarro, M.A.; Osada, J. Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development. Mol. Nutr. Food Res. 2012, 56, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Bernardini, E. Extra virgin olive oil’s polyphenols: Biological activities. Curr. Pharm. Des. 2011, 17, 786–804. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidou, V.; Covas, M.I.; Sola, R.; Fito, M. Up-to date knowledge on the in vivo transcriptomic effect of the mediterranean diet in humans. Mol. Nutr. Food Res. 2013, 57, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Arnal, C.; Lou-Bonafonte, J.M.; Rodriguez_Yoldi, M.J.; Martinez-Gracia, M.V.; Osada, J. Transcriptomics and nutrition in mammalians. In Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods; Bagchi, D., Lau, F., Bagchi, M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The Gencode v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome. Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Glazar, P.; Papavasileiou, P.; Rajewsky, N. Circbase: A database for circular RNAs. RNA 2014, 20, 1666–1670. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S. Mirbase. Available online: http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa (accessed on 11 February 2017).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Pubmed. Available online: http://www.ncbi.nlm.nih.gov/pubmed (accessed on 7 April 2017).
- Rafehi, H.; Smith, A.J.; Balcerczyk, A.; Ziemann, M.; Ooi, J.; Loveridge, S.J.; Baker, E.K.; El-Osta, A.; Karagiannis, T.C. Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: Mechanistic insights by genome-wide mRNA-seq analysis. Genes Nutr. 2012, 7, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Nan, J.N.; Ververis, K.; Bollu, S.; Rodd, A.L.; Swarup, O.; Karagiannis, T.C. Biological effects of the olive polyphenol, hydroxytyrosol: An extra view from genome-wide transcriptome analysis. Hell. J. Nucl. Med. 2014, 17 (Suppl. 1), 62–69. [Google Scholar] [PubMed]
- Yang, Z.H.; Bando, M.; Sakurai, T.; Chen, Y.; Emma-Okon, B.; Wilhite, B.; Fukuda, D.; Vaisman, B.; Pryor, M.; Wakabayashi, Y.; et al. Long-chain monounsaturated fatty acid-rich fish oil attenuates the development of atherosclerosis in mouse models. Mol. Nutr. Food Res. 2016, 60, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Govindarajah, V.; Leung, Y.K.; Ying, J.; Gear, R.; Bornschein, R.L.; Medvedovic, M.; Ho, S.M. In utero exposure of rats to high-fat diets perturbs gene expression profiles and cancer susceptibility of prepubertal mammary glands. J. Nutr. Biochem. 2016, 29, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Casado-Diaz, A.; Anter, J.; Muller, S.; Winter, P.; Quesada-Gomez, J.M.; Dorado, G. Transcriptomic analyses of the anti-adipogenic effects of oleuropein in human mesenchymal stem cells. Food Funct. 2017, 8, 1254–1270. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, S.J.; Feskens, E.J.; Bos, M.B.; Hoelen, D.W.; Heijligenberg, R.; Bromhaar, M.G.; de Groot, L.C.; de Vries, J.H.; Muller, M.; Afman, L.A. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am. J. Clin. Nutr. 2009, 90, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Marlow, G.; Ellett, S.; Ferguson, I.R.; Zhu, S.; Karunasinghe, N.; Jesuthasan, A.C.; Han, D.Y.; Fraser, A.G.; Ferguson, L.R. Transcriptomics to study the effect of a mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum. Genom. 2013, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, S.J.; Feskens, E.J.; Bos, M.B.; de Groot, L.C.; de Vries, J.H.; Muller, M.; Afman, L.A. Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women. J. Nutr. 2012, 142, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Ruano, J.; Fernandez, J.M.; Parnell, L.D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M.; Lopez-Miranda, J.; et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom. 2010, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, S.; Vacca, M.; Cariello, M.; Graziano, G.; D’Orazio, A.; Salvia, R.; Sasso, R.C.; Sabba, C.; Palasciano, G.; Moschetta, A. Genes and mirna expression signatures in peripheral blood mononuclear cells in healthy subjects and patients with metabolic syndrome after acute intake of extra virgin olive oil. Biochim. Biophys. Acta 2016, 1861, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Esser, D.; van Dijk, S.J.; Oosterink, E.; Lopez, S.; Muller, M.; Afman, L.A. High fat challenges with different fatty acids affect distinct atherogenic gene expression pathways in immune cells from lean and obese subjects. Mol. Nutr. Food Res. 2015, 59, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidou, V.; Khymenets, O.; Fito, M.; De La Torre, R.; Anglada, R.; Dopazo, A.; Covas, M.I. Characterization of human gene expression changes after olive oil ingestion: An exploratory approach. Folia Biol. (Praha) 2009, 55, 85–91. [Google Scholar] [PubMed]
- Castaner, O.; Corella, D.; Covas, M.I.; Sorli, J.V.; Subirana, I.; Flores-Mateo, G.; Nonell, L.; Bullo, M.; de la Torre, R.; Portoles, O.; et al. In vivo transcriptomic profile after a mediterranean diet in high-cardiovascular risk patients: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 98, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Khymenets, O.; Fito, M.; Covas, M.I.; Farre, M.; Pujadas, M.A.; Munoz, D.; Konstantinidou, V.; de la Torre, R. Mononuclear cell transcriptome response after sustained virgin olive oil consumption in humans: An exploratory nutrigenomics study. OMICS 2009, 13, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, F.; Lamon-Fava, S.; Asztalos, B.F.; Iyer, L.K.; Richardson, K.; Schaefer, E.J. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression. Atherosclerosis 2015, 241, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Pampaloni, B.; Mavilia, C.; Fabbri, S.; Romani, A.; Ieri, F.; Tanini, A.; Tonelli, F.; Brandi, M.L. In vitro effects of extracts of extra virgin olive oil on human colon cancer cells. Nutr. Cancer 2014, 66, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Oliveras-Ferraros, C.; Fernandez-Arroyo, S.; Vazquez-Martin, A.; Lozano-Sanchez, J.; Cufi, S.; Joven, J.; Micol, V.; Fernandez-Gutierrez, A.; Segura-Carretero, A.; Menendez, J.A. Crude phenolic extracts from extra virgin olive oil circumvent de novo breast cancer resistance to her1/her2-targeting drugs by inducing gadd45-sensed cellular stress, g2/m arrest and hyperacetylation of histone h3. Int. J. Oncol. 2011, 38, 1533–1547. [Google Scholar] [PubMed]
- Menendez, J.A.; Joven, J.; Aragones, G.; Barrajon-Catalan, E.; Beltran-Debon, R.; Borras-Linares, I.; Camps, J.; Corominas-Faja, B.; Cufi, S.; Fernandez-Arroyo, S.; et al. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: A new family of gerosuppressant agents. Cell Cycle 2013, 12, 555–578. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.C.; Masko, E.M.; Wu, C.; Keenan, M.M.; Pilla, D.M.; Aronson, W.J.; Chi, J.T.; Freedland, S.J. Fish oil slows prostate cancer xenograft growth relative to other dietary fats and is associated with decreased mitochondrial and insulin pathway gene expression. Prostate Cancer Prostatic Dis. 2013, 16, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, B.; Lopez, S.; Pacheco, Y.M.; Villar, J.; Muriana, F.J.; Hoheisel, J.D.; Bauer, A.; Abia, R. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc. Res. 2008, 79, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Canuelo, A.; Esteban, F.J.; Peragon, J. Gene expression profiling to investigate tyrosol-induced lifespan extension in caenorhabditis elegans. Eur. J. Nutr. 2016, 55, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Limtipsuntorn, U.; Haga, Y.; Kondo, H.; Hirono, I.; Satoh, S. Microarray analysis of hepatic gene expression in juvenile japanese flounder paralichthys olivaceus fed diets supplemented with fish or vegetable oils. Mar. Biotechnol. 2014, 16, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Giordano, E.; Davalos, A.; Visioli, F. Chronic hydroxytyrosol feeding modulates glutathione-mediated oxido-reduction pathways in adipose tissue: A nutrigenomic study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Luceri, C.; Bigagli, E.; Pitozzi, V.; Giovannelli, L. A nutrigenomics approach for the study of anti-aging interventions: Olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur. J. Nutr. 2017, 56, 865–877. [Google Scholar] [CrossRef] [PubMed]
- De Wit, N.; Derrien, M.; Bosch-Vermeulen, H.; Oosterink, E.; Keshtkar, S.; Duval, C.; de Vogel-van den Bosch, J.; Kleerebezem, M.; Muller, M.; van der Meer, R. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G589–G599. [Google Scholar] [CrossRef] [PubMed]
- Acin, S.; Navarro, M.A.; Perona, J.S.; Surra, J.C.; Guillen, N.; Arnal, C.; Sarria, A.J.; Arbones-Mainar, J.M.; Carnicer, R.; Ruiz-Gutierrez, V.; et al. Microarray analysis of hepatic genes differentially expressed in the presence of the unsaponifiable fraction of olive oil in apolipoprotein E-deficient mice. Br. J. Nutr. 2007, 97, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Gabas-Rivera, C.; Martinez-Beamonte, R.; Rios, J.L.; Navarro, M.A.; Surra, J.C.; Arnal, C.; Rodriguez-Yoldi, M.J.; Osada, J. Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. J. Nutr. Biochem. 2013, 24, 2100–2109. [Google Scholar] [CrossRef] [PubMed]
- Guillen, N.; Acin, S.; Surra, J.C.; Arnal, C.; Godino, J.; Garcia-Granados, A.; Muniesa, P.; Ruiz-Gutierrez, V.; Osada, J. Apolipoprotein E determines the hepatic transcriptional profile of dietary maslinic acid in mice. J. Nutr. Biochem. 2009, 20, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Davidson, L.A.; Nguyen, D.V.; Hokanson, R.M.; Callaway, E.S.; Isett, R.B.; Turner, N.D.; Dougherty, E.R.; Wang, N.; Lupton, J.R.; Carroll, R.J.; et al. Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during colon cancer initiation and progression in the rat. Cancer Res. 2004, 64, 6797–6804. [Google Scholar] [CrossRef] [PubMed]
- Kachroo, P.; Ivanov, I.; Davidson, L.A.; Chowdhary, B.P.; Lupton, J.R.; Chapkin, R.S. Classification of diet-modulated gene signatures at the colon cancer initiation and progression stages. Dig. Dis. Sci. 2011, 56, 2595–2604. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Elam, M.B.; Wilcox, H.G.; Cagen, L.M.; Park, E.A.; Raghow, R.; Patel, D.; Kumar, P.; Sheybani, A.; Russell, J.C. Dietary olive oil and menhaden oil mitigate induction of lipogenesis in hyperinsulinemic corpulent jcr:La-cp rats: Microarray analysis of lipid-related gene expression. Endocrinology 2004, 145, 5847–5861. [Google Scholar] [CrossRef] [PubMed]
- Eletto, D.; Leone, A.; Bifulco, M.; Tecce, M.F. Effect of unsaturated fat intake from mediterranean diet on rat liver mRNA expression profile: Selective modulation of genes involved in lipid metabolism. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Beamonte, R.; Navarro, M.A.; Guillen, N.; Acin, S.; Arnal, C.; Guzman, M.A.; Osada, J. Postprandial transcriptome associated with virgin olive oil intake in rat liver. Front. Biosci. (Elite Ed.) 2011, 3, 11–21. [Google Scholar] [PubMed]
- Ronis, M.J.; Baumgardner, J.N.; Marecki, J.C.; Hennings, L.; Wu, X.; Shankar, K.; Cleves, M.A.; Gomez-Acevedo, H.; Badger, T.M. Dietary fat source alters hepatic gene expression profile and determines the type of liver pathology in rats overfed via total enteral nutrition. Physiol. Genom. 2012, 44, 1073–1089. [Google Scholar] [CrossRef] [PubMed]
- Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.; Camacho-Corencia, P.; Sanchez-Rovira, P.; Vera-Ramirez, L.; Ramirez-Tortosa, M.C. Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of SFRP4 in rat mammary tumours. Mol. Nutr. Food Res. 2011, 55, S117–S126. [Google Scholar] [CrossRef] [PubMed]
- Moral, R.; Escrich, R.; Solanas, M.; Vela, E.; Ruiz de Villa, M.C.; Escrich, E. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility. Eur. J. Nutr. 2015, 55, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Kim, S.C.; Lee, S.D.; Jang, H.C.; Kim, N.K.; Lee, S.H.; Jung, H.J.; Kim, I.C.; Seong, H.H.; Choi, B.H. Effects of dietary fat types on growth performance, pork quality, and gene expression in growing-finishing pigs. Asian Australas. J. Anim. Sci. 2012, 25, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.; Gabás-Rivera, C.; Navarro, M.; Osada, J. Pon1 and mediterranean diet. Nutrients 2015, 7, 4068–4096. [Google Scholar] [CrossRef] [PubMed]
- Guillen, N.; Navarro, M.A.; Arnal, C.; Noone, E.; Arbones-Mainar, J.M.; Acin, S.; Surra, J.C.; Muniesa, P.; Roche, H.M.; Osada, J. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver. Physiol. Genom. 2009, 37, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Pini, E.; Scurti, M.; Palmas, G.; Berendsen, A.; Brzozowska, A.; Pietruszka, B.; Szczecinska, A.; Cano, N.; Meunier, N.; et al. Combating inflammaging through a mediterranean whole diet approach: The NU-AGE project’s conceptual framework and design. Mech. Ageing Dev. 2014, 136–137, 3–13. [Google Scholar] [CrossRef] [PubMed]
Olive Oil | Number of References | Mediterranean Diet | Number of References |
---|---|---|---|
DNA arrays | 1 | DNA arrays | 1 |
Microarray | 28 | Microarray | 7 |
Microarrays | 11 | Microarrays | 3 |
Gene expression profile | 26 | Gene expression profile | 11 |
Transcriptional profile | 11 | Transcriptional profile | 6 |
RNA profile | 8 | RNA profile | 1 |
Transcriptome | 19 | Transcriptome | 12 |
Transcriptomics | 2 | Transcriptomics | 12 |
RNA seq or RNAseq | 0 | RNA seq or RNAseq | 1 |
mRNA-Seq | 1 | mRNA-Seq | 1 |
RNA sequencing | 1 | RNA sequencing | 0 |
Species | Tissue | Platform | Number of Probes | Dietary Intervention | References |
---|---|---|---|---|---|
Human studies | |||||
Ex vivo | Adipose tissue | GeneChip arrays Affymetrix | 17,699 | MUFA vs. SFA | [20] |
Ex vivo | PBMC | PrimeView ™ arrays Affymetrix | 36,000 | Med diet vs. previous diet | [21] |
Ex vivo | PBMC | GeneChip arrays Affymetrix | 17,699 | MUFA vs. SFA vs. Med diet | [22] |
Ex vivo | PBMC | Oligo Microarrays (G4112A) Agilent | 45,220 | Phenolic compounds, postprandial | [23] |
Ex vivo | PBMC | HT-12 v4 Illumina V2 MicroRNA Illumina | 47,000 | Phenolic compounds, postprandial | [24] |
1146 | |||||
Ex vivo | PBMC | Gene 1.1 ST Array Affymetrix | 56,249 | MUFA vs. SFA, postprandial | [25] |
Ex vivo | PBMC | Genome Survey Microarray V2.0 Applied Biosystems | 32,878 | Virgin olive oil, postprandial | [26] |
Ex vivo | PBMC | GeneChip U133A 2.0 Affymetrix | 18,400 | Low fat vs. Med diet | [27] |
Ex vivo | PBMC | Genome Survey Microarray V2.0 Applied Biosystems | 32,878 | Long-term virgin olive oil consumption | [28] |
Ex vivo | PBMC | HT-12 v4 BeadChip Illumina | 47,000 | OO vs. EPA or DHA | [29] |
Cells of human origin | |||||
In vitro | Colon cancer cells | Custom-made Oligo Microarray chip | 700 | Phenolic compounds | [30] |
In vitro | Erythroleukemic cell line K562 and keratinocytes | RNA seq | 20 × 106 reads | Hydroxytyrosol | [15,16] |
In vitro | JIMT1 breast cancer cells | Oligo Microarrays (G4112F) Agilent | 45,220 | Phenolic compounds | [31,32] |
In vitro | Mesenchymal stem cells | Serial Analysis of Gene Expression | Counts not shown | Oleuropein | [19] |
In vitro | Prostatic tumors | Human genome 133A 2.0 Affymetrix | 22,000 | Fish oil vs. OO or corn oil | [33] |
In vitro | SMC | Low density array | 4376 | TRL from MUFA vs. SFA vs. Med diet | [34] |
Animal studies | |||||
C. elegans | Whole organism | C. elegans Gene-Chip ® Genome Arrays Affymetrix | 22,500 | Tyrosol (250 µM) | [35] |
Flounder | Liver | Chip Array Tokyo University | 14,461 | OO vs. LO | [36] |
Mouse | Adipose tissue | MouseRef-8 v2 Illumina | 25,600 | Hydroxytyrosol (0.03%) | [37] |
Mouse | Cerebral cortex Cerebelum | Agilent Mouse GE 44K v2 and Agilent mice miRNA array | 39,430 | Phenolic content of OO | [38] |
1247 | |||||
Mouse | Intestine | GeneChip MOE430 2 Affymetrix | 39,000 | OO vs. palm or safflower | [39] |
Mouse | Liver | GeneChip MOE430A Affymetrix | 22,690 | Unsaponifiable fraction of OO | [40] |
Mouse | Liver | GeneChip MOE430A Affymetrix | 22,690 | Oleanolic acid | [41] |
Mouse | Liver | GeneChip MOE430A Affymetrix | 22,690 | Maslinic acid | [42] |
Mouse | Liver | RNA seq | 23 × 106 reads | OO vs. Western or Long-chain MUFA | [17] |
Rat | Colon | Codelink UniSetRat I GE Healthcare | 9028 | Fish oil vs. OO or corn oil | [43,44] |
Rat | Liver | Array Affymetrix | 12,500 | Fish oil vs. OO | [45] |
Rat | Liver | Rat U34 Affymetrix | 26,334 | MUFA vs. SFA, long-term | [46] |
Rat | Liver | Expression Array 230 version 2.0 Affymetrix | 31,000 | Virgin olive oil, fasting vs. postprandial | [47] |
Rat | Liver | RGU34A GeneChip Affymetrix | 8800 | OO vs. corn oil, long-term regimen | [48] |
Rat | Mammary glands | RNA seq | Counts not shown | OO vs butter or safflower | [18] |
Rat | Mammary tumors | Expression Array 230 2.0 Affymetrix | 31,000 | Hydroxytyrosol | [49] |
Rat | Mammary tumors | Rat Exon 1.0 ST Array Affymetrix | 1 × 106 | OO vs. corn and low fat diets | [50] |
Swine | Muscle | Porcine genome array Affymetrix | 23,937 | OO vs. beef tallow, coconut or soybean oils | [51] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Marcos, L.V.; Lou-Bonafonte, J.M.; Arnal, C.; Navarro, M.A.; Osada, J. Transcriptomics and the Mediterranean Diet: A Systematic Review. Nutrients 2017, 9, 472. https://doi.org/10.3390/nu9050472
Herrera-Marcos LV, Lou-Bonafonte JM, Arnal C, Navarro MA, Osada J. Transcriptomics and the Mediterranean Diet: A Systematic Review. Nutrients. 2017; 9(5):472. https://doi.org/10.3390/nu9050472
Chicago/Turabian StyleHerrera-Marcos, Luis V., José M. Lou-Bonafonte, Carmen Arnal, María A. Navarro, and Jesús Osada. 2017. "Transcriptomics and the Mediterranean Diet: A Systematic Review" Nutrients 9, no. 5: 472. https://doi.org/10.3390/nu9050472
APA StyleHerrera-Marcos, L. V., Lou-Bonafonte, J. M., Arnal, C., Navarro, M. A., & Osada, J. (2017). Transcriptomics and the Mediterranean Diet: A Systematic Review. Nutrients, 9(5), 472. https://doi.org/10.3390/nu9050472