Next Article in Journal
A Review of Recruitment, Adherence and Drop-Out Rates in Omega-3 Polyunsaturated Fatty Acid Supplementation Trials in Children and Adolescents
Previous Article in Journal
Transcriptomics and the Mediterranean Diet: A Systematic Review
Open AccessArticle

A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians

1
Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore
2
Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore
*
Author to whom correspondence should be addressed.
Nutrients 2017, 9(5), 473; https://doi.org/10.3390/nu9050473
Received: 31 March 2017 / Revised: 4 May 2017 / Accepted: 5 May 2017 / Published: 9 May 2017
Low glycaemic index (GI) foods minimize large blood glucose fluctuations and have been advocated to enhance fat oxidation and may contribute to weight management. We determined whether the inclusion of isomaltulose compared to sucrose in a low/high GI meal sequence can modulate the glycaemic response and substrate oxidation in an Asian population. Twenty Chinese men (body mass index (BMI): 17–28 kg/m2) followed a 24 h low GI (isomaltulose, PalatinoseTM) or high GI (sucrose) diet in a randomized double-blind, controlled cross-over design. Treatment meals included dinner (day 1), breakfast, lunch, and snack (day 2). Continuous glucose monitoring provided incremental area under the curve (iAUC) and mean amplitude of glycaemic excursion (MAGE) and 10 h indirect calorimetry (whole body calorimeter) (day 2) provided energy expenditure and substrate oxidation. Our results demonstrated that the low GI diet resulted in lower 24 h glucose iAUC (502.5 ± 231.4 vs. 872.6 ± 493.1 mmol/L; p = 0.002) and lower 24 h glycaemic variability (MAGE: 1.67 ± 0.53 vs. 2.68 ± 1.13 mmol/L; p < 0.001). Simultaneously, 10 h respiratory quotient increased more during high GI (p = 0.014) and fat oxidation was higher after low GI breakfast (p = 0.026), lunch (p < 0.001) and snack (p = 0.013). This indicates that lower GI mixed meals incorporating isomaltulose are able to acutely reduce the glycaemic response and variability and promote fat oxidation. View Full-Text
Keywords: sucrose; isomaltulose; glycaemic index; Asians; whole body calorimeter; indirect calorimetry; continuous glucose monitoring; glycaemic response; substrate oxidation sucrose; isomaltulose; glycaemic index; Asians; whole body calorimeter; indirect calorimetry; continuous glucose monitoring; glycaemic response; substrate oxidation
Show Figures

Figure 1

MDPI and ACS Style

Henry, C.J.; Kaur, B.; Quek, R.Y.C.; Camps, S.G. A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians. Nutrients 2017, 9, 473.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop