A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management
Abstract
1. Introduction
2. Definitions and Acronyms
3. Literature Review
3.1. Recognition
3.2. Measurement
Reference | Target | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|---|
Al-Jubouri et al. [64] | Length | Underwater (controlled) | Zebrafish | Mathematical model | 0.99 1 |
Alshdaifat et al. [65] | Body segmentation | Underwater (Fish4Knowledge) | Clownfish | Faster R-CNN, RPN, modified FCN | 0.95 7 |
Álvarez Ellacuría et al. [1] | Length | Out of water | European hake | Mask R-CNN | 0.92 6 |
Baloch et al. [66] | Length of body parts | All | Several fish species | Mathematical morphology, rules | 0.87 1 |
Bravata et al. [63] | Length, weight, circumference | Out of water | 22 species | CNN | 0.73–0.94 1 |
Fernandes et al. [67] | Length, weight | Out of water | Nile tilapia | SegNet-based model | 0.95–0.96 5 |
Garcia et al. [68] | Length | Underwater (controlled) | 7 species | Mask R-CNN | 0.58–0.90 5 |
Jeong et al. [34] | Length, width | Out of water (conveyor belt) | Flatfish | Mathematical morphology | 0.99 1 |
Konovalov et al. [69] | Weight | Out of water | Asian Seabass | FCN-8s (CNN) | 0.98 8 |
Monkman et al. [70] | Length | Out of water | European sea bass | NasNet, ResNet-101, MobileNet | 0.93 5 |
Muñoz-Benavent et al. [61] | Length | Underwater (uncontrolled) | Bluefin tuna | Mathematical model | 0.93–0.97 1 |
Palmer et al. [62] | Length | Out of water | Dolphinfish | Mask R-CNN | 0.86 1 |
Rasmussen et al. [71] | Length (larvae) | Petri dishes | 6 species | Mathematical morphology | 0.97 1 |
Ravanbakhsh et al. [72] | Body segmentation | Underwater (controlled) | Bluefin tuna | PCA, Haar classifier | 0.90–1.00 1 |
Rico-Díaz et al. [73] | Length | Underwater (uncontrolled) | 3 species | Hough algorithm, ANN | 0.74 1 |
Shafait et al. [74] | Length | Underwater (uncontrolled) | Southern Bluefin Tuna | Template matching | 0.90–0.99 1 |
Tseng et al. [75] | Length | Out of water | 3 species | CNN | 0.96 1 |
White et al. [76] | Length | Out of water | 7 species | Mathematical model | 1.00 1 |
Yao et al. [77] | Body segmentation | Out of water | Back crucian carp, common carp | K-means | N/A |
Yu et al. [78] | Length, width, others | Out of water | Silverfish | Mask R-CNN | 0.97–0.99 1 |
Yu et al. [79] | Length, width, area | Out of water | Silverfish | Improved U-net | 0.97–0.99 1 |
Zhang et al. [80] | Weight | Out of water | Crucian carp | BPNN | 0.90 8 |
Zhang et al. [81] | Body segmentation | Underwater (uncontrolled) | Several | DPANet | 0.85–0.91 1 |
Zhou et al. [82] | Body segmentation | Out of water | 9 species | Atrous pyramid GAN | 0.96–0.98 5 |
3.3. Tracking
Reference | Target | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|---|
Abe et al. [35] | Individual | Underwater (uncontrolled) | Bluefin tuna | SegNet | 0.72 2 |
Anas et al. [85] | Individual | Underwater (controlled) | Goldfish, tilapia | YOLO, NB, kNN, RF | 0.8–0.9 1 |
Atienza-Vanacloig et al. [60] | Individual | Underwater (uncontrolled) | Bluefin tuna | Deformable adaptive 2D model | 0.9 1 |
Boom et al. [94] | Individual | Underwater (Fish4Knowledge) | Several | GMM, APMM, ViBe, Adaboost, SVM | 0.80–0.93 1 |
Cheng et al. [95] | Individual | Underwater (controlled) | N/A | CNN | 0.93–0.97 2 |
Delcourt et al. [96] | Individual | Underwater (controlled) | Tilapia | Mathematical morphology | 0.83–0.99 1 |
Ditria et al. [58] | Individual | Underwater | Luderick | ResNet50 | 0.92 2 |
Duarte et al. [90] | Individual | Underwater (controlled) | Senegalese sole | Mathematical model | 0.8–0.9 8 |
Han et al. [86] | Shoal | Underwater (controlled) | Zebrafish | CNN | 0.71–0.82 1 |
Huang et al. [97] | Individual | Underwater (uncontrolled) | N/A | Kalman filter, SSD, YOLOv2 | 0.94–0.96 1 |
Li et al. [98] | Individual | Underwater (controlled) | N/A | CMFTNet | 0.66 1 |
Liu et al. [99] | Individual | Underwater (controlled) | Zebrafish | Mathematical models | 0.95 1 |
Papadakis et al. [92] | Individual | Underwater (controlled) | Gilthead sea bream | LABView (3rd party software) | N/A |
Papadakis et al. [93] | Individual | Underwater (controlled) | Sea bass, see bream | Mathematical model | N/A |
Pérez-Escudero et al. [100] | Individual | Underwater (controlled) | Zebrafish, medaka | Mathematical morphology | 0.99 1 |
Pinkiewicz et al. [91] | Individual | Underwater (uncontrolled) | Atlantic salmon | Kalman filter | 0.99 1 |
Qian et al. [59] | Individual | Underwater (controlled) | Zebrafish | Kalman filter, feature matching | 0.96–0.99 1 |
Qian et al. [83] | Individual | Underwater (controlled) | Zebrafish | Mathematical model | 0.97–0.98 1 |
Saberioon and Cisar [101] | Individual | Underwater (controlled) | Nile tilapia | Mathematical morphology | 0.97–0.98 1 |
Sadoul et al. [102] | Shoal | Underwater (controlled) | Rainbow trout | Mathematical model | 0.94 1 |
Sun et al. [103] | Shoal | Underwater (controlled) | Crucian | K-means | 0.93 1 |
Teles et al. [104] | Individual | Underwater (controlled) | Zebrafish | PNN, SOM | 0.94 1 |
Wageeh et al. [105] | Individual | Underwater (controlled) | Goldfish | MSR-YOLO | N/A |
Wang et al. [106] | Individual | Underwater (controlled) | Zebrafish | CNN | 0.94–0.99 2 |
Wang et al. [84] | Individual | Underwater (controlled) | Spotted knifejaw | FlowNet2, 3D CNN | 0.95 1 |
Xia et al. [107] | Individual | Underwater (controlled) | Zebrafish | Mathematical model | 0.98–1.00 1 |
Xu et al. [87] | Individual | Underwater (controlled) | Goldfish | Faster R-CNN, YOLO-V3 | 0.95–0.98 1 |
Zhao et al. [88] | Individual | Underwater (controlled) | Red snapper | Thresholding, Kalman filter | 0.98 1 |
3.4. Classification
Reference | Target | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|---|
Ahmed et al. [112] | Diseased/healthy | Out of water | Salmon | SVM | 0.91–0.94 |
Allken et al. [113] | Species | Underwater (controlled) | 3 fish species | CNN | 0.94 |
Alsmadi et al. [114] | Broad classes | Out of water | Several fish species | Memetic algorithm | 0.82–0.90 |
Alsmadi [115] | Broad classes | Out of water | Several fish species | Hybrid Tabu search, genetic algorithm | 0.82–0.87 |
Banan et al. [116] | Species | Out of water | Carp (4 species) | CNN | 1.00 |
Banerjee et al. [117] | Species | Out of water | Carp (3 species) | Deep convolutional autoencoder | 0.97 |
Boom et al. [94] | Species | Underwater (Fish4Knowledge) | Several | GMM, APMM, ViBe, Adaboost, SVM | 0.80–0.93 |
Chuang et al. [118] | Species | Underwater (Fish4Knowledge) | Several fish species | Hierarchical partial classifier (SVM) | 0.92–0.97 |
Coro and Walsh [42] | Size categories | Underwater (uncontrolled) | Tuna, sharks, mantas | YOLOv3 | 0.65–0.75 |
Hernández-Serna and Jiménez-Segura [119] | Species | Out of water | Several fish species | MLPNN | 0.88–0.92 |
Hsiao et al. [120] | Species | Underwater (uncontrolled) | Several fish species | SRC-MP | 0.82–0.96 |
Hu et al. [121] | Species | Out of water | 6 fish species | Multi-class SVM | 0.98 |
Huang et al. [39] | Species | Underwater (uncontrolled) | 15 fish species | Hierarchical tree, GMM | 0.97 |
Iqbal et al. [122] | Species | All | 6 fish species | Reduced AlexNet (CNN) | 0.9 |
Iqbal et al. [89] | Feeding status | Underwater (controlled) | Black scrapers | CNN | 0.98 |
Ismail et al. [123] | Species | All | 18 species | AlexNet, GoogleNet, ResNet50 | 0.99 |
Jalal et al. [124] | Species | Underwater (Fish4Knowledge) | Several fish species | YOLO-based model, GMM | 0.8–0.95 |
Joo et al. [125] | Species | Underwater (controlled) | Cichlids (12 species) | SVM, RF | 0.67–0.78 |
Ju and Xue [126] | Species | All | Several fish species | AlexNet (CNN) | 0.91–0.97 |
Knausgård et al. [127] | Species | Underwater (Fish4Knowledge) | 23 fish species | YOLOv3, CNN | 0.84–0.99 |
Kutlu et al. [128] | Species | Out of water | 25 fish species | kNN | 0.99 |
Li et al. [129] | Fish face recognition | Underwater (controlled) | Golden crucian carp | Self-SE module, FFRNet | 0.9 |
Liu et al. [130] | Feeding activity | Underwater (controlled) | Atlantic salmon | Mathematical model | 0.92 |
Lu et al. [131] | Species | Out of water | 6 species | Modified VGG-16 (CNN) | 0.96 |
Måløy et al. [132] | Feeding status | Underwater (uncontrolled) | Salmon | DSRN | 0.8 |
Mana and Sasipraba [133] | Species | Underwater (Fish4Knowledge) | Corkwing, pollack, coalfish | Mask R-CNN, ODKELM | 0.94–0.96 |
Mathur et al. [134] | Species | Underwater (Fish4Knowledge) | 23 species | ResNet50 (CNN) | 0.98 |
Meng et al. [135] | Species | Underwater (uncontrolled) | Guppy, snakehead, medaka, neontetora | GoogleNet, AlexNet (CNN) | 0.85–0.87 |
Ovalle et al. [111] | Species | Out of water | 14 species | Mask R-CNN, MobileNet-V1 | 0.75–0.98 |
Pramunendar et al. [136] | Species | Underwater (Fish4Knowledge) | 23 species | MLPNN | 0.93–0.96 |
Qin et al. [137] | Species | Underwater (Fish4Knowledge) | 23 species | SVM, CNN | 0.98 |
Qiu et al. [138] | Species | Underwater (uncontrolled) | Several | Bilinear CNN | 0.72–0.95 |
Rauf et al. [139] | Species identification | Out of water | 6 species | 32-layer CNN | 0.85–0.96 |
Rohani et al. [140] | Fish eggs (dead/alive) | Out of water | Rainbow trout | MLPNN, SVM | 0.99 |
Saberioon et al. [141] | Feeding status | Out of water (anesthetized fish) | Rainbow trout | RF, SVM, LR, kNN | 0.75–0.82 |
Saitoh et al. [142] | Species | Out of water | 129 species | RF | 0.30–0.87 |
Salman et al. [143] | Species | Underwater (Fish4Knowledge) | 15 species | CNN | 0.90 |
dos Santos and Gonçalves [144] | Species | All | 68 species | CNN | 0.87 |
Shafait et al. [6] | Species | Underwater (Fish4Knowledge) | 10 species | PCA, nearest neighbor classifier | 0.94 |
Sharmin et al. [145] | Species | Out of water | 6 species | PCA, SVM | 0.94 |
Siddiqui et al. [146] | Species | Underwater (uncontrolled) | 16 species | CNN, SVM | 0.94 |
Smadi et al. [147] | Species | Out of water | 8 species | CNN | 0.98 |
Spampinato et al. [148] | Species | Underwater (Fish4Knowledge) | 10 species | SIFT, LTP, SVM | 0.85–0.99 |
Štifanić et al. [149] | Species | Underwater (Fish4Knowledge) | 4 species | CNN | 0.99 |
Storbeck and Daan [150] | Species | Out of water (conveyor belt) | 6 species | MLPNN | 0.95 |
Tharwat et al. [151] | Species | Out of water | 4 species | LDA, AdaBoost | 0.96 |
Ubina et al. [152] | Feeding intensity | Water tank | N/A | 3D CNN | 0.95 |
Villon et al. [108] | Species | Underwater (uncontrolled) | 20 species | CNN | 0.95 |
White et al. [76] | Species | Out of water | 7 species | Canonical discriminant analysis | 1.00 |
Wishkerman et al. [153] | Pigmentation patterns | Out of water | Senegalese sole | GLCM, PCA, LDA | >0.9 |
Xu et al. [154] | Species | Out of water | 6 species | SE-ResNet152 | 0.91–0.98 |
Zhang et al. [110] | Species | Out of water | 8 species | AdaBoost | 0.99 |
Zhang et al. [109] | Species | Underwater (uncontrolled) | 9 species | ResNet50 (CNN) | 0.85–0.90 |
Zhou et al. [155] | Feeding intensity | Underwater (controlled) | Tilapia | LeNet5 (CNN) | 0.9 |
Zion et al. [156] | Species | Underwater (controlled) | 3 species | Mathematical model | 0.91–1.00 |
Zion et al. [157] | Species | Underwater (controlled) | 3 species | Mathematical model | 0.89–1.00 |
4. General Remarks
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Álvarez Ellacuría, A.; Palmer, M.; Catalán, I.A.; Lisani, J.L. Image-based, unsupervised estimation of fish size from commercial landings using deep learning. ICES J. Mar. Sci. 2020, 77, 1330–1339. [Google Scholar] [CrossRef]
- Banno, K.; Kaland, H.; Crescitelli, A.M.; Tuene, S.A.; Aas, G.H.; Gansel, L.C. A novel approach for wild fish monitoring at aquaculture sites: Wild fish presence analysis using computer vision. Aquac. Environ. Interact. 2022, 14, 97–112. [Google Scholar] [CrossRef]
- Saleh, A.; Sheaves, M.; Rahimi Azghadi, M. Computer vision and deep learning for fish classification in underwater habitats: A survey. Fish Fish. 2022, 23, 977–999. [Google Scholar] [CrossRef]
- Ditria, E.M.; Sievers, M.; Lopez-Marcano, S.; Jinks, E.L.; Connolly, R.M. Deep learning for automated analysis of fish abundance: The benefits of training across multiple habitats. Environ. Monit. Assess. 2020, 192, 698. [Google Scholar] [CrossRef] [PubMed]
- Ditria, E.M.; Lopez-Marcano, S.; Sievers, M.; Jinks, E.L.; Brown, C.J.; Connolly, R.M. Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Shafait, F.; Mian, A.; Shortis, M.; Ghanem, B.; Culverhouse, P.F.; Edgington, D.; Cline, D.; Ravanbakhsh, M.; Seager, J.; Harvey, E.S. Fish identification from videos captured in uncontrolled underwater environments. ICES J. Mar. Sci. 2016, 73, 2737–2746. [Google Scholar] [CrossRef]
- Noda, J.J.; Travieso, C.M.; Sánchez-Rodríguez, D. Automatic Taxonomic Classification of Fish Based on Their Acoustic Signals. Appl. Sci. 2016, 6, 443. [Google Scholar] [CrossRef]
- Helminen, J.; Linnansaari, T. Object and behavior differentiation for improved automated counts of migrating river fish using imaging sonar data. Fish. Res. 2021, 237, 105883. [Google Scholar] [CrossRef]
- Saberioon, M.; Gholizadeh, A.; Cisar, P.; Pautsina, A.; Urban, J. Application of machine vision systems in aquaculture with emphasis on fish: State-of-the-art and key issues. Rev. Aquac. 2017, 9, 369–387. [Google Scholar] [CrossRef]
- Salman, A.; Siddiqui, S.A.; Shafait, F.; Mian, A.; Shortis, M.R.; Khurshid, K.; Ulges, A.; Schwanecke, U. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 2020, 77, 1295–1307. [Google Scholar] [CrossRef]
- Alsmadi, M.K.; Almarashdeh, I. A survey on fish classification techniques. J. King Saud-Univ.—Comput. Inf. Sci. 2022, 34, 1625–1638. [Google Scholar] [CrossRef]
- An, D.; Hao, J.; Wei, Y.; Wang, Y.; Yu, X. Application of computer vision in fish intelligent feeding system—A review. Aquac. Res. 2021, 52, 423–437. [Google Scholar] [CrossRef]
- Delcourt, J.; Denoël, M.; Ylieff, M.; Poncin, P. Video multitracking of fish behaviour: A synthesis and future perspectives. Fish Fish. 2013, 14, 186–204. [Google Scholar] [CrossRef]
- Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A Review on Intelligence Dehazing and Color Restoration for Underwater Images. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1820–1832. [Google Scholar] [CrossRef]
- Goodwin, M.; Halvorsen, K.T.; Jiao, L.; Knausgård, K.M.; Martin, A.H.; Moyano, M.; Oomen, R.A.; Rasmussen, J.H.; Sørdalen, T.K.; Thorbjørnsen, S.H. Unlocking the potential of deep learning for marine ecology: Overview, applications, and outlook. ICES J. Mar. Sci. 2022, 79, 319–336. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Wu, S.; Miao, Z.; Du, L.; Duan, Y. Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture 2020, 528, 735508. [Google Scholar] [CrossRef]
- Li, D.; Hao, Y.; Duan, Y. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: A review. Rev. Aquac. 2020, 12, 1390–1411. [Google Scholar] [CrossRef]
- Li, D.; Du, L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish. Artif. Intell. Rev. 2022, 55, 4077–4116. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Li, X.; Niu, M.; Wang, H.; Liu, C. Recent advances of machine vision technology in fish classification. ICES J. Mar. Sci. 2022, 79, 263–284. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Du, L.; Zheng, Y.; Wang, Z. Recent advances in intelligent recognition methods for fish stress behavior. Aquac. Eng. 2022, 96, 102222. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, H.; Wu, J.; Cui, Z.; Zhang, F. Survey of Fish Behavior Analysis by Computer Vision. J. Aquac. Res. Dev. 2018, 9, 534. [Google Scholar] [CrossRef]
- Saleh, A.; Sheaves, M.; Jerry, D.; Azghadi, M.R. Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and Survey. arXiv 2022, arXiv:2206.05394. [Google Scholar] [CrossRef]
- Sheaves, M.; Bradley, M.; Herrera, C.; Mattone, C.; Lennard, C.; Sheaves, J.; Konovalov, D.A. Optimizing video sampling for juvenile fish surveys: Using deep learning and evaluation of assumptions to produce critical fisheries parameters. Fish Fish. 2020, 21, 1259–1276. [Google Scholar] [CrossRef]
- Shortis, M.R.; Ravanbakhsh, M.; Shafait, F.; Mian, A. Progress in the Automated Identification, Measurement, and Counting of Fish in Underwater Image Sequences. Mar. Technol. Soc. J. 2016, 50, 4–16. [Google Scholar] [CrossRef]
- Ubina, N.A.; Cheng, S.C. A Review of Unmanned System Technologies with Its Application to Aquaculture Farm Monitoring and Management. Drones 2022, 6, 12. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Wang, T.; Xu, X.; Zhang, X.; Li, D. Intelligent fish farm—The future of aquaculture. Aquac. Int. 2021, 29, 2681–2711. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Fu, L.; Liu, Z.; Liu, H.; Chen, L.; Liu, Y. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress. J. Toxicol. 2018, 2018, 2591924. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2021, 13, 66–90. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Yu, H.; Fang, X.; Song, L.; Li, D.; Chen, Y. Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A Review. Arch. Comput. Methods Eng. 2021, 28, 2785–2816. [Google Scholar] [CrossRef]
- Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [CrossRef]
- Zion, B. The use of computer vision technologies in aquaculture—A review. Computers and Electronics in Agriculture 2012, 88, 125–132. [Google Scholar] [CrossRef]
- Bock, C.H.; Pethybridge, S.J.; Barbedo, J.G.A.; Esker, P.D.; Mahlein, A.K.; Ponte, E.M.D. A phytopathometry glossary for the twenty-first century: Towards consistency and precision in intra- and inter-disciplinary dialogues. Trop. Plant Pathol. 2022, 47, 14–24. [Google Scholar] [CrossRef]
- Follana-Berná, G.; Palmer, M.; Lekanda-Guarrotxena, A.; Grau, A.; Arechavala-Lopez, P. Fish density estimation using unbaited cameras: Accounting for environmental-dependent detectability. J. Exp. Mar. Biol. Ecol. 2020, 527, 151376. [Google Scholar] [CrossRef]
- Jeong, S.J.; Yang, Y.S.; Lee, K.; Kang, J.G.; Lee, D.G. Vision-based Automatic System for Non-contact Measurement of Morphometric Characteristics of Flatfish. J. Electr. Eng. Technol. 2013, 8, 1194–1201. [Google Scholar] [CrossRef]
- Abe, S.; Takagi, T.; Torisawa, S.; Abe, K.; Habe, H.; Iguchi, N.; Takehara, K.; Masuma, S.; Yagi, H.; Yamaguchi, T.; et al. Development of fish spatio-temporal identifying technology using SegNet in aquaculture net cages. Aquac. Eng. 2021, 93, 102146. [Google Scholar] [CrossRef]
- Labao, A.B.; Naval, P.C. Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild. Ecol. Inform. 2019, 52, 103–121. [Google Scholar] [CrossRef]
- French, G.; Fisher, M.; Mackiewicz, M.; Needle, C. Convolutional Neural Networks for Counting Fish in Fisheries Surveillance Video. In Machine Vision of Animals and their Behaviour (MVAB); Amaral, T., Matthews, S., Fisher, R., Eds.; BMVA Press: Dundee, UK, 2015; pp. 7.1–7.10. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Lu, J.; Wang, H.; Feng, Y.; Shi, C.; Li, D.; Zhao, R. A lightweight dead fish detection method based on deformable convolution and YOLOV4. Comput. Electron. Agric. 2022, 198, 107098. [Google Scholar] [CrossRef]
- Huang, P.; Boom, B.J.; Fisher, R.B. Hierarchical classification with reject option for live fish recognition. Mach. Vis. Appl. 2015, 26, 89–102. [Google Scholar] [CrossRef]
- Aliyu, I.; Gana, K.J.; Musa, A.A.; Adegboye, M.A.; Lim, C.G. Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry. KSII Trans. Internet Inf. Syst. 2020, 14, 4866–4888. [Google Scholar] [CrossRef]
- Boudhane, M.; Nsiri, B. Underwater image processing method for fish localization and detection in submarine environment. J. Vis. Commun. Image Represent. 2016, 39, 226–238. [Google Scholar] [CrossRef]
- Coro, G.; Walsh, M.B. An intelligent and cost-effective remote underwater video device for fish size monitoring. Ecol. Inform. 2021, 63, 101311. [Google Scholar] [CrossRef]
- Coronel, L.; Badoy, W.; Namoco, C.S., Jr. Identification of an efficient filtering-segmentation technique for automated counting of fish fingerlings. Int. Arab. J. Inf. Technol. 2018, 15, 708–714. [Google Scholar]
- Costa, C.S.; Zanoni, V.A.G.; Curvo, L.R.V.; de Araújo Carvalho, M.; Boscolo, W.R.; Signor, A.; dos Santos de Arruda, M.; Nucci, H.H.P.; Junior, J.M.; Gonçalves, W.N.; et al. Deep learning applied in fish reproduction for counting larvae in images captured by smartphone. Aquac. Eng. 2022, 97, 102225. [Google Scholar] [CrossRef]
- Ditria, E.M.; Connolly, R.M.; Jinks, E.L.; Lopez-Marcano, S. Annotated Video Footage for Automated Identification and Counting of Fish in Unconstrained Seagrass Habitats. Front. Mar. Sci. 2021, 8, 629485. [Google Scholar] [CrossRef]
- Jiang, L.; Quan, H.; Xie, T.; Qian, J. Fish recognition in complex underwater scenes based on targeted sample transfer learning. Multimed. Tools Appl. 2022, 81, 25303–25317. [Google Scholar] [CrossRef]
- Laradji, I.H.; Saleh, A.; Rodriguez, P.; Nowrouzezahrai, D.; Azghadi, M.R.; Vazquez, D. Weakly supervised underwater fish segmentation using affinity LCFCN. Sci. Rep. 2021, 11, 17379. [Google Scholar] [CrossRef]
- Lee, J.V.; Loo, J.L.; Chuah, Y.D.; Tang, P.Y.; Tan, Y.C.; Goh, W.J. The Use of Vision in a Sustainable Aquaculture Feeding System. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 3658–3669. [Google Scholar] [CrossRef]
- Li, J.; Zhu, K.; Wang, F.; Jiang, F. Deep neural network-based real time fish detection method in the scene of marine fishing supervision. J. Intell. Fuzzy Syst. 2021, 41, 4527–4532. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Lu, X.; Wu, B. CME-YOLOv5: An Efficient Object Detection Network for Densely Spaced Fish and Small Targets. Water 2022, 14, 2412. [Google Scholar] [CrossRef]
- Lin, B.; Jiang, K.; Xu, Z.; Li, F.; Li, J.; Mou, C.; Gong, X.; Duan, X. Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection. Fishes 2021, 6, 65. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Gu, Y.; Li, P.; Zhai, F.; Huang, H.; He, S. A high-density fish school segmentation framework for biomass statistics in a deep-sea cage. Ecol. Inform. 2021, 64, 101367. [Google Scholar] [CrossRef]
- Marini, S.; Corgnati, L.; Mantovani, C.; Bastianini, M.; Ottaviani, E.; Fanelli, E.; Aguzzi, J.; Griffa, A.; Poulain, P.M. Automated estimate of fish abundance through the autonomous imaging device GUARD1. Measurement 2018, 126, 72–75. [Google Scholar] [CrossRef]
- Marini, S.; Fanelli, E.; Sbragaglia, V.; Azzurro, E.; Fernandez, J.D.R.; Aguzzi, J. Tracking Fish Abundance by Underwater Image Recognition. Sci. Rep. 2018, 8, 13748. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kang, C. A Study on Enhancement of Fish Recognition Using Cumulative Mean of YOLO Network in Underwater Video Images. J. Mar. Sci. Eng. 2020, 8, 952. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Wang, Y.; Zhao, Z.; Liu, J.; Liu, Y.; Sun, C.; Zhou, C. Automatic Fish Population Counting by Machine Vision and a Hybrid Deep Neural Network Model. Animals 2020, 10, 364. [Google Scholar] [CrossRef]
- Li, C.Y.; Guo, J.C.; Cong, R.M.; Pang, Y.W.; Wang, B. Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef]
- Ditria, E.M.; Jinks, E.L.; Connolly, R.M. Automating the analysis of fish grazing behaviour from videos using image classification and optical flow. Anim. Behav. 2021, 177, 31–37. [Google Scholar] [CrossRef]
- Qian, Z.M.; Cheng, X.E.; Chen, Y.Q. Automatically Detect and Track Multiple Fish Swimming in Shallow Water with Frequent Occlusion. PLoS ONE 2014, 9, e106506. [Google Scholar] [CrossRef]
- Atienza-Vanacloig, V.; Andreu-García, G.; López-García, F.; Valiente-González, J.M.; Puig-Pons, V. Vision-based discrimination of tuna individuals in grow-out cages through a fish bending model. Comput. Electron. Agric. 2016, 130, 142–150. [Google Scholar] [CrossRef]
- Muñoz-Benavent, P.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Puig-Pons, V.; Espinosa, V. Enhanced fish bending model for automatic tuna sizing using computer vision. Comput. Electron. Agric. 2018, 150, 52–61. [Google Scholar] [CrossRef]
- Palmer, M.; Álvarez Ellacuría, A.; Moltó, V.; Catalán, I.A. Automatic, operational, high-resolution monitoring of fish length and catch numbers from landings using deep learning. Fish. Res. 2022, 246, 106166. [Google Scholar] [CrossRef]
- Bravata, N.; Kelly, D.; Eickholt, J.; Bryan, J.; Miehls, S.; Zielinski, D. Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish. Ecol. Evol. 2020, 10, 9313–9325. [Google Scholar] [CrossRef] [PubMed]
- Al-Jubouri, Q.; Al-Nuaimy, W.; Al-Taee, M.; Young, I. An automated vision system for measurement of zebrafish length using low-cost orthogonal web cameras. Aquac. Eng. 2017, 78, 155–162. [Google Scholar] [CrossRef]
- Alshdaifat, N.F.F.; Talib, A.Z.; Osman, M.A. Improved deep learning framework for fish segmentation in underwater videos. Ecol. Inform. 2020, 59, 101121. [Google Scholar] [CrossRef]
- Baloch, A.; Ali, M.; Gul, F.; Basir, S.; Afzal, I. Fish Image Segmentation Algorithm (FISA) for Improving the Performance of Image Retrieval System. Int. J. Adv. Comput. Sci. Appl. 2017, 8. [Google Scholar] [CrossRef]
- Fernandes, A.F.; Turra, E.M.; Érika, R. de Alvarenga.; Passafaro, T.L.; Lopes, F.B.; Alves, G.F.; Singh, V.; Rosa, G.J. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Comput. Electron. Agric. 2020, 170, 105274. [Google Scholar] [CrossRef]
- Garcia, R.; Prados, R.; Quintana, J.; Tempelaar, A.; Gracias, N.; Rosen, S.; Vågstøl, H.; Løvall, K. Automatic segmentation of fish using deep learning with application to fish size measurement. ICES J. Mar. Sci. 2020, 77, 1354–1366. [Google Scholar] [CrossRef]
- Konovalov, D.; Saleh, A.; Domingos, J.; White, R.; Jerry, D. Estimating Mass of Harvested Asian Seabass Lates calcarifer from Images. World J. Eng. Technol. 2018, 6, 15–23. [Google Scholar] [CrossRef]
- Monkman, G.G.; Hyder, K.; Kaiser, M.J.; Vidal, F.P. Using machine vision to estimate fish length from images using regional convolutional neural networks. Methods Ecol. Evol. 2019, 10, 2045–2056. [Google Scholar] [CrossRef]
- Rasmussen, J.H.; Moyano, M.; Fuiman, L.A.; Oomen, R.A. FishSizer: Software solution for efficiently measuring larval fish size. Ecol. Evol. 2022, 12, e8672. [Google Scholar] [CrossRef]
- Ravanbakhsh, M.; Shortis, M.R.; Shafait, F.; Mian, A.; Harvey, E.S.; Seager, J.W. Automated Fish Detection in Underwater Images Using Shape-Based Level Sets. Photogramm. Rec. 2015, 30, 46–62. [Google Scholar] [CrossRef]
- Rico-Díaz, J.; Rabuñal, J.R.; Gestal, M.; Mures, O.A.; Puertas, J. An Application of Fish Detection Based on Eye Search with Artificial Vision and Artificial Neural Networks. Water 2020, 12, 3013. [Google Scholar] [CrossRef]
- Shafait, F.; Harvey, E.S.; Shortis, M.R.; Mian, A.; Ravanbakhsh, M.; Seager, J.W.; Culverhouse, P.F.; Cline, D.E.; Edgington, D.R. Towards automating underwater measurement of fish length: A comparison of semi-automatic and manual stereo–video measurements. ICES J. Mar. Sci. 2017, 74, 1690–1701. [Google Scholar] [CrossRef]
- Tseng, C.H.; Hsieh, C.L.; Kuo, Y.F. Automatic measurement of the body length of harvested fish using convolutional neural networks. Biosyst. Eng. 2020, 189, 36–47. [Google Scholar] [CrossRef]
- White, D.; Svellingen, C.; Strachan, N. Automated measurement of species and length of fish by computer vision. Fish. Res. 2006, 80, 203–210. [Google Scholar] [CrossRef]
- Yao, H.; Duan, Q.; Li, D.; Wang, J. An improved K-means clustering algorithm for fish image segmentation. Math. Comput. Model. 2013, 58, 790–798. [Google Scholar] [CrossRef]
- Yu, C.; Fan, X.; Hu, Z.; Xia, X.; Zhao, Y.; Li, R.; Bai, Y. Segmentation and measurement scheme for fish morphological features based on Mask R-CNN. Inf. Process. Agric. 2020, 7, 523–534. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Z.; Han, B.; Wang, P.; Zhao, Y.; Wu, H. Intelligent Measurement of Morphological Characteristics of Fish Using Improved U-Net. Electronics 2021, 10, 1426. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Duan, Q. Estimation for fish mass using image analysis and neural network. Comput. Electron. Agric. 2020, 173, 105439. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Bao, Z. DPANet: Dual Pooling-aggregated Attention Network for fish segmentation. IET Comput. Vis. 2022, 16, 67–82. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, S.; Ren, Y.; Zhang, Y.; Fu, J.; Fan, D.; Lin, J.; Wang, Q. Atrous Pyramid GAN Segmentation Network for Fish Images with High Performance. Electronics 2022, 11, 911. [Google Scholar] [CrossRef]
- Qian, Z.M.; Wang, S.H.; Cheng, X.E.; Chen, Y.Q. An effective and robust method for tracking multiple fish in video image based on fish head detection. BMC Bioinform. 2016, 17, 251. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Muhammad, A.; Liu, C.; Du, L.; Li, D. Automatic Recognition of Fish Behavior with a Fusion of RGB and Optical Flow Data Based on Deep Learning. Animals 2021, 11, 2774. [Google Scholar] [CrossRef] [PubMed]
- Anas, O.; Wageeh, Y.; Mohamed, H.E.D.; Fadl, A.; ElMasry, N.; Nabil, A.; Atia, A. Detecting Abnormal Fish Behavior Using Motion Trajectories in Ubiquitous Environments. Procedia Comput. Sci. 2020, 175, 141–148. [Google Scholar] [CrossRef]
- Han, F.; Zhu, J.; Liu, B.; Zhang, B.; Xie, F. Fish Shoals Behavior Detection Based on Convolutional Neural Network and Spatiotemporal Information. IEEE Access 2020, 8, 126907–126926. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, Z.; Ge, F.; Han, Z.; Li, J. Analysis of Behavior Trajectory Based on Deep Learning in Ammonia Environment for Fish. Sensors 2020, 20, 4425. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, S.; Gao, Q. An Algorithm for Tracking Multiple Fish Based on Biological Water Quality Monitoring. IEEE Access 2019, 7, 15018–15026. [Google Scholar] [CrossRef]
- Iqbal, U.; Li, D.; Akhter, M. Intelligent Diagnosis of Fish Behavior Using Deep Learning Method. Fishes 2022, 7, 201. [Google Scholar] [CrossRef]
- Duarte, S.; Reig, L.; Oca, J. Measurement of sole activity by digital image analysis. Aquac. Eng. 2009, 41, 22–27. [Google Scholar] [CrossRef]
- Pinkiewicz, T.; Purser, G.; Williams, R. A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: A case study using cage-held Atlantic salmon. Aquac. Eng. 2011, 45, 20–27. [Google Scholar] [CrossRef]
- Papadakis, V.M.; Papadakis, I.E.; Lamprianidou, F.; Glaropoulos, A.; Kentouri, M. A computer-vision system and methodology for the analysis of fish behavior. Aquac. Eng. 2012, 46, 53–59. [Google Scholar] [CrossRef]
- Papadakis, V.M.; Glaropoulos, A.; Kentouri, M. Sub-second analysis of fish behavior using a novel computer-vision system. Aquac. Eng. 2014, 62, 36–41. [Google Scholar] [CrossRef]
- Boom, B.J.; He, J.; Palazzo, S.; Huang, P.X.; Beyan, C.; Chou, H.M.; Lin, F.P.; Spampinato, C.; Fisher, R.B. A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage. Ecol. Inform. 2014, 23, 83–97. [Google Scholar] [CrossRef]
- Cheng, X.E.; Du, S.S.; Li, H.Y.; Hu, J.F.; Chen, M.L. Obtaining three-dimensional trajectory of multiple fish in water tank via video tracking. Multimed. Tools Appl. 2018, 77, 24499–24519. [Google Scholar] [CrossRef]
- Delcourt, J.; Becco, C.; Vandewalle, N.; Poncin, P. A video multitracking system for quantification of individual behavior in a large fish shoal: Advantages and limits. Behav. Res. Methods 2009, 41, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.W.; Hwang, J.N.; Romain, S.; Wallace, F. Fish Tracking and Segmentation From Stereo Videos on the Wild Sea Surface for Electronic Monitoring of Rail Fishing. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3146–3158. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Li, Z. CMFTNet: Multiple fish tracking based on counterpoised JointNet. Comput. Electron. Agric. 2022, 198, 107018. [Google Scholar] [CrossRef]
- Liu, X.; Yue, Y.; Shi, M.; Qian, Z.M. 3-D Video Tracking of Multiple Fish in a Water Tank. IEEE Access 2019, 7, 145049–145059. [Google Scholar] [CrossRef]
- Pérez-Escudero, A.; Vicente-Page, J.; Hinz, R.C.; Arganda, S.; de Polavieja, G.G. idTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 2014, 11, 743–748. [Google Scholar] [CrossRef]
- Saberioon, M.; Cisar, P. Automated multiple fish tracking in three-Dimension using a Structured Light Sensor. Comput. Electron. Agric. 2016, 121, 215–221. [Google Scholar] [CrossRef]
- Sadoul, B.; Evouna Mengues, P.; Friggens, N.; Prunet, P.; Colson, V. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions. Aquaculture 2014, 430, 179–187. [Google Scholar] [CrossRef]
- Sun, L.; Luo, B.; Liu, T.; Liu, Y.; Wei, Y. Algorithm of Adaptive Fast Clustering for Fish Swarm Color Image Segmentation. IEEE Access 2019, 7, 178753–178762. [Google Scholar] [CrossRef]
- Teles, L.O.; Fernandes, M.; Amorim, J.; Vasconcelos, V. Video-tracking of zebrafish (Danio rerio) as a biological early warning system using two distinct artificial neural networks: Probabilistic neural network (PNN) and self-organizing map (SOM). Aquat. Toxicol. 2015, 165, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wageeh, Y.; Mohamed, H.E.D.; Fadl, A.; Anas, O.; ElMasry, N.; Nabil, A.; Atia, A. YOLO fish detection with Euclidean tracking in fish farms. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 5–12. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhao, J.W.; Chen, Y.Q. Robust tracking of fish schools using CNN for head identification. Multimed. Tools Appl. 2017, 76, 23679–23697. [Google Scholar] [CrossRef]
- Xia, C.; Chon, T.S.; Liu, Y.; Chi, J.; Lee, J.M. Posture tracking of multiple individual fish for behavioral monitoring with visual sensors. Ecol. Inform. 2016, 36, 190–198. [Google Scholar] [CrossRef]
- Villon, S.; Mouillot, D.; Chaumont, M.; Darling, E.S.; Subsol, G.; Claverie, T.; Villéger, S. A Deep learning method for accurate and fast identification of coral reef fishes in underwater images. Ecol. Inform. 2018, 48, 238–244. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Zhu, Y.; Han, W.; Huang, Y.; Li, J. Research on fish identification in tropical waters under unconstrained environment based on transfer learning. Earth Sci. Inform. 2022, 15, 1155–1166. [Google Scholar] [CrossRef]
- Zhang, D.; Lee, D.J.; Zhang, M.; Tippetts, B.J.; Lillywhite, K.D. Object recognition algorithm for the automatic identification and removal of invasive fish. Biosyst. Eng. 2016, 145, 65–75. [Google Scholar] [CrossRef]
- Ovalle, J.C.; Vilas, C.; Antelo, L.T. On the use of deep learning for fish species recognition and quantification on board fishing vessels. Mar. Policy 2022, 139, 105015. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Aurpa, T.T.; Azad, M.A.K. Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 5170–5182. [Google Scholar] [CrossRef]
- Allken, V.; Handegard, N.O.; Rosen, S.; Schreyeck, T.; Mahiout, T.; Malde, K. Fish species identification using a convolutional neural network trained on synthetic data. ICES J. Mar. Sci. 2019, 76, 342–349. [Google Scholar] [CrossRef]
- Alsmadi, M.K.; Tayfour, M.; Alkhasawneh, R.A.; Badawi, U.; Almarashdeh, I.; Haddad, F. Robust feature extraction methods for general fish classification. Int. J. Electr. Comput. Eng. 2019, 9, 5192–5204. [Google Scholar] [CrossRef]
- Alsmadi, M.K. Hybrid Genetic Algorithm with Tabu Search with Back-Propagation Algorithm for Fish Classification: Determining the Appropriate Feature Set. Int. J. Appl. Eng. Res. 2019, 14, 4387–4396. [Google Scholar]
- Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep learning-based appearance features extraction for automated carp species identification. Aquac. Eng. 2020, 89, 102053. [Google Scholar] [CrossRef]
- Banerjee, A.; Das, A.; Behra, S.; Bhattacharjee, D.; Srinivasan, N.T.; Nasipuri, M.; Das, N. Carp-DCAE: Deep convolutional autoencoder for carp fish classification. Comput. Electron. Agric. 2022, 196, 106810. [Google Scholar] [CrossRef]
- Chuang, M.C.; Hwang, J.N.; Williams, K. A Feature Learning and Object Recognition Framework for Underwater Fish Images. IEEE Trans. Image Process. 2016, 25, 1862–1872. [Google Scholar] [CrossRef]
- Hernández-Serna, A.; Jiménez-Segura, L.F. Automatic identification of species with neural networks. PeerJ 2014, 2, e563. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Chen, C.C.; Lin, S.I.; Lin, F.P. Real-world underwater fish recognition and identification, using sparse representation. Ecol. Inform. 2014, 23, 13–21. [Google Scholar] [CrossRef]
- Hu, J.; Li, D.; Duan, Q.; Han, Y.; Chen, G.; Si, X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agric. 2012, 88, 133–140. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Wang, Z.; Ali, Z.A.; Riaz, S. Automatic Fish Species Classification Using Deep Convolutional Neural Networks. Wirel. Pers. Commun. 2021, 116, 1043–1053. [Google Scholar] [CrossRef]
- Ismail, H.; Ayob, A.F.M.; Muslim, A.M.S.M.; Zulkifi, M.F.R. Convolutional neural network architectures performance evaluation for fish species classification. J. Sustain. Sci. Manag. 2021, 16, 124–139. [Google Scholar] [CrossRef]
- Jalal, A.; Salman, A.; Mian, A.; Shortis, M.; Shafait, F. Fish detection and species classification in underwater environments using deep learning with temporal information. Ecol. Inform. 2020, 57, 101088. [Google Scholar] [CrossRef]
- Joo, D.; Kwan, Y.s.; Song, J.; Pinho, C.; Hey, J.; Won, Y.J. Identification of Cichlid Fishes from Lake Malawi Using Computer Vision. PLOS ONE 2013, 8, e77686. [Google Scholar] [CrossRef]
- Ju, Z.; Xue, Y. Fish species recognition using an improved AlexNet model. Optik 2020, 223, 165499. [Google Scholar] [CrossRef]
- Knausgård, K.M.; Wiklund, A.; Sørdalen, T.K.; Halvorsen, K.T.; Kleiven, A.R.; Jiao, L.; Goodwin, M. Temperate fish detection and classification: A deep learning based approach. Appl. Intell. 2022, 52, 6988–7001. [Google Scholar] [CrossRef]
- Kutlu, Y.; Iscimen, B.; Turan, C. Multi-Stage Fish Classification System Using Morphometry. Fresenius Environ. Bull. 2017, 26, 1911–1917. [Google Scholar]
- Li, D.; Su, H.; Jiang, K.; Liu, D.; Duan, X. Fish Face Identification Based on Rotated Object Detection: Dataset and Exploration. Fishes 2022, 7, 219. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Fan, L.; Lu, H.; Liu, L.; Liu, Y. Measuring feeding activity of fish in RAS using computer vision. Aquac. Eng. 2014, 60, 20–27. [Google Scholar] [CrossRef]
- Lu, Y.C.; Tung, C.; Kuo, Y.F. Identifying the species of harvested tuna and billfish using deep convolutional neural networks. ICES J. Mar. Sci. 2020, 77, 1318–1329. [Google Scholar] [CrossRef]
- Måløy, H.; Aamodt, A.; Misimi, E. A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture. Comput. Electron. Agric. 2019, 167, 105087. [Google Scholar] [CrossRef]
- Mana, S.C.; Sasipraba, T. An Intelligent Deep Learning Enabled Marine Fish Species Detection and Classification Model. Int. J. Artif. Intell. Tools 2022, 31, 2250017. [Google Scholar] [CrossRef]
- Mathur, M.; Vasudev, D.; Sahoo, S.; Jain, D.; Goel, N. Crosspooled FishNet: Transfer learning based fish species classification model. Multimed. Tools Appl. 2020, 79, 31625–31643. [Google Scholar] [CrossRef]
- Meng, L.; Hirayama, T.; Oyanagi, S. Underwater-Drone With Panoramic Camera for Automatic Fish Recognition Based on Deep Learning. IEEE Access 2018, 6, 17880–17886. [Google Scholar] [CrossRef]
- Pramunendar, R.A.; Prabowo, D.P.; Pergiwati, D.; Sari, Y.; Andono, P.N.; Soeleman, M.A. New Workflow for Marine Fish Classification Based on Combination Features and CLAHE Enhancement Technique. Int. J. Intell. Eng. Syst. 2020, 13, 293–304. [Google Scholar] [CrossRef]
- Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 2016, 187, 49–58. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, S.; Wang, C.; Yu, Z.; Zheng, H.; Zheng, B. Improving Transfer Learning and Squeeze- and-Excitation Networks for Small-Scale Fine-Grained Fish Image Classification. IEEE Access 2018, 6, 78503–78512. [Google Scholar] [CrossRef]
- Rauf, H.T.; Lali, M.I.U.; Zahoor, S.; Shah, S.Z.H.; Rehman, A.U.; Bukhari, S.A.C. Visual features based automated identification of fish species using deep convolutional neural networks. Comput. Electron. Agric. 2019, 167, 105075. [Google Scholar] [CrossRef]
- Rohani, A.; Taki, M.; Bahrami, G. Application of artificial intelligence for separation of live and dead rainbow trout fish eggs. Artif. Intell. Agric. 2019, 1, 27–34. [Google Scholar] [CrossRef]
- Saberioon, M.; Císař, P.; Labbé, L.; Souček, P.; Pelissier, P.; Kerneis, T. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features. Sensors 2018, 18, 1027. [Google Scholar] [CrossRef]
- Saitoh, T.; Shibata, T.; Miyazono, T. Feature Points based Fish Image Recognition. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2016, 8, 12–22. [Google Scholar]
- Salman, A.; Jalal, A.; Shafait, F.; Mian, A.; Shortis, M.; Seager, J.; Harvey, E. Fish species classification in unconstrained underwater environments based on deep learning. Limnol. Oceanogr. Methods 2016, 14, 570–585. [Google Scholar] [CrossRef]
- dos Santos, A.A.; Gonçalves, W.N. Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural networks. Ecol. Inform. 2019, 53, 100977. [Google Scholar] [CrossRef]
- Sharmin, I.; Islam, N.F.; Jahan, I.; Joye, T.A.; Rahman, M.R.; Habib, M.T. Machine vision based local fish recognition. SN Appl. Sci. 2019, 1, 1529. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S. Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 2018, 75, 374–389. [Google Scholar] [CrossRef]
- Smadi, A.A.; Mehmood, A.; Abugabah, A.; Almekhlafi, E.; Al-Smadi, A.M. Deep convolutional neural network-based system for fish classification. Int. J. Electr. Comput. Eng. 2022, 12, 2026–2039. [Google Scholar] [CrossRef]
- Spampinato, C.; Palazzo, S.; Joalland, P.H.; Paris, S.; Glotin, H.; Blanc, K.; Lingrand, D.; Precioso, F. Fine-grained object recognition in underwater visual data. Multimed. Tools Appl. 2016, 75, 131–142. [Google Scholar] [CrossRef]
- Štifanić, D.; Musulin, J.; Car, Z.; Čep, R. Use of Convolutional Neural Network for Fish Species Classification. Pomor. Zb. 2020, 59, 131–142. [Google Scholar] [CrossRef]
- Storbeck, F.; Daan, B. Fish species recognition using computer vision and a neural network. Fish. Res. 2001, 51, 11–15. [Google Scholar] [CrossRef]
- Tharwat, A.; Hemedan, A.A.; Hassanien, A.E.; Gabel, T. A biometric-based model for fish species classification. Fish. Res. 2018, 204, 324–336. [Google Scholar] [CrossRef]
- Ubina, N.; Cheng, S.C.; Chang, C.C.; Chen, H.Y. Evaluating fish feeding intensity in aquaculture with convolutional neural networks. Aquac. Eng. 2021, 94, 102178. [Google Scholar] [CrossRef]
- Wishkerman, A.; Boglino, A.; Darias, M.J.; Andree, K.B.; Estévez, A.; Gisbert, E. Image analysis-based classification of pigmentation patterns in fish: A case study of pseudo-albinism in Senegalese sole. Aquaculture 2016, 464, 303–308. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Duan, Q. Transfer learning and SE-ResNet152 networks-based for small-scale unbalanced fish species identification. Comput. Electron. Agric. 2021, 180, 105878. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, D.; Chen, L.; Zhang, S.; Sun, C.; Yang, X.; Wang, Y. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture 2019, 507, 457–465. [Google Scholar] [CrossRef]
- Zion, B.; Shklyar, A.; Karplus, I. In-vivo fish sorting by computer vision. Aquac. Eng. 2000, 22, 165–179. [Google Scholar] [CrossRef]
- Zion, B.; Shklyar, A.; Karplus, I. Sorting fish by computer vision. Comput. Electron. Agric. 1999, 23, 175–187. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, X.; Zhang, B.; Lin, K.; Xu, D.; Guo, Q.; Sun, C. An adaptive image enhancement method for a recirculating aquaculture system. Sci. Rep. 2017, 7, 6243. [Google Scholar] [CrossRef]
- Villon, S.; Mouillot, D.; Chaumont, M.; Subsol, G.; Claverie, T.; Villéger, S. A new method to control error rates in automated species identification with deep learning algorithms. Sci. Rep. 2020, 10, 10972. [Google Scholar] [CrossRef]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Ma, J.; Fan, X.; Yang, S.X.; Zhang, X.; Zhu, X. Contrast Limited Adaptive Histogram Equalization-Based Fusion in YIQ and HSI Color Spaces for Underwater Image Enhancement. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1854018. [Google Scholar] [CrossRef]
- Abdul Ghani, A.S.; Mat Isa, N.A. Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl. Soft Comput. 2015, 27, 219–230. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Tarling, P.; Cantor, M.; Clapés, A.; Escalera, S. Deep learning with self-supervision and uncertainty regularization to count fish in underwater images. PLoS ONE 2022, 17, e0267759. [Google Scholar] [CrossRef]
- Zhou, C.; Lin, K.; Xu, D.; Chen, L.; Guo, Q.; Sun, C.; Yang, X. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Comput. Electron. Agric. 2018, 146, 114–124. [Google Scholar] [CrossRef]
- Irwin, A. Citizen Science: A Study of People, Expertise and Sustainable Development, 1st ed.; Routledge: London, UK, 2002. [Google Scholar]
- Barbedo, J.G.A. Deep learning applied to plant pathology: The problem of data representativeness. Trop. Plant Pathol. 2022, 47, 85–94. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Deng, Y. Deep learning on mobile devices: A review. In Mobile Multimedia/Image Processing, Security, and Applications 2019; Agaian, S.S., Asari, V.K., DelMarco, S.P., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 10993, p. 109930A. [Google Scholar] [CrossRef]
Reference | Theme |
---|---|
Alsmadi and Almarashdeh [11] | Fish classification |
An et al. [12] | Fish feeding systems |
Delcourt et al. [13] | Fish behavior (tracking) |
Han et al. [14] | Enhancement of underwater images |
Goodwin et al. [15] | Deep learning for marine ecology |
Li et al. [16] | Fish feeding behavior (not exclusively computer vision) |
Li et al. [17] | Fish biomass estimation (not exclusively computer vision) |
Li and Du [18] | Deep learning for aquaculture |
Li et al. [19] | Fish classification |
Li et al. [20] | Fish stress behavior (not exclusively computer vision) |
Zhou et al. [21] | Fish behavior |
Saberioon et al. [9] | Machine vision systems in aquaculture |
Saleh et al. [3] | Fish classification using deep learning |
Saleh et al. [22] | Deep learning in fish habitat monitoring |
Sheaves et al. [23] | Deep learning for juvenile fish surveys |
Shortis et al. [24] | Automated identification, measurement, and counting of fish |
Ubina and Cheng [25] | Unmanned systems for aquaculture monitoring and management |
Wang et al. [26] | Intelligent fish farming |
Xia et al. [27] | Fish behavior (toxicology) |
Yang et al. [28] | Deep learning for smart fish farming |
Yang et al. [29] | Computer vision applied to aquaculture |
Zha [30] | Machine learning applied to aquaculture |
Zion [31] | Computer vision applied to aquaculture |
Acronym | Meaning | Acronym | Meaning |
---|---|---|---|
AI | Artificial Intelligence | LSTM | Long Short-Term Memory |
ANN | Artificial Neural Network | LTP | Local Ternary Patterns |
APMM | Adaptive Poisson Mixture Model | MLPNN | Multilayer Perceptron Neural Network |
BPNN | Back Propagation Neural Network | MSR | Multi-Scale Retinex |
CMFTNet | Counterpoised Multiple Fish Tracking Network | NB | Naive Bayes |
CNN | Convolutional Neural Network | ODKELM | Optimal Deep Kernel Extreme Learning Machine |
DNN | Deep Neural Network | PCA | Principal Component Analysis |
DPANet | Depth Potentiality-Aware Network | PNN | Probabilistic Neural Network |
DSRN | Dual-Stream Recurrent Network | R-CNN | Region-Based Convolutional Neural Network |
FCN | Fully Convolutional Network | RF | Random Forests |
FFRNet | Fish Face Recognition Network | RPN | Region Proposal Network |
GAN | Generative Adversarial Network | SIFT | Scale-Invariant Feature Transform |
GLCM | Gray Level Co-Occurrence Matrix | SRC | Sparse Representation Classification |
GMM | Gaussian Mixture Model | SSD | Sigle-Shot Detector |
kNN | k-Nearest Neighbors | SOM | Self Organizing Map |
LDA | Linear Discriminant Analysis | SVM | Support Vector Machine |
LR | Logistic Regression | YOLO | You Only Look Once |
Reference | Context | Species | Main Technique | Accuracy |
---|---|---|---|---|
Aliyu et al. [40] | Underwater (controlled) | Catfish | MLPNN | 1.00 1 |
Banno et al. [2] | All | Saithe, mackerel, cod | YOLOv4 | 0.95 1 |
Boudhane and Nsiri [41] | Underwater (uncontrolled) | N/A | Mean shift, Poisson–Gaussian mixture | 0.94 1 |
Coro and Walsh [42] | Underwater (uncontrolled) | Tuna, sharks, mantas | YOLOv3 | 0.65–0.75 1 |
Coronel et al. [43] | Underwater (controlled) | Tilapia (fingerlings) | Local Normalization, median filters, Minimum-Error threshold | 0.95–1.00 2 |
Costa et al. [44] | Petri dishes | Tilapia (larvae) | CNN (10 architectures) | 0.97 3 |
Ditria et al. [5] | Underwater (uncontrolled) | Luderick | Mask R-CNN | 0.93 3 |
Ditria et al. [4] | Underwater (uncontrolled) | Luderick | Mask R-CNN | 0.88–0.92 3 |
Ditria et al. [45] | Underwater (uncontrolled) | Luderick | Mask R-CNN | 0.88–0.92 3 |
Follana-Berná et al. [33] | Underwater (uncontrolled) | Painted comber | Mathematical model | 0.74–0.76 4 |
French et al. [37] | Out of water (conveyor belt) | N/A | CNN | 0.84–0.98 1 |
Jiang et al. [46] | Underwater (Fish4Knowledge) | 10 fish species | CNN | 0.91 1 |
Labao and Naval [36] | Underwater (uncontrolled) | Several fish species | Region-based CNNs, LSTM networks | 0.44–0.56 2 |
Laradji et al. [47] | Underwater (uncontrolled) | Several fish species | B Affinity LCFCN | 0.75–0.88 5 |
Lee et al. [48] | Underwater (controlled) | N/A | LABView (3rd party software) | 0.8 1 |
Li et al. [49] | Out of water | Several fish species | YOLO-V3-Tiny | 0.40–0.99 3 |
Li et al. [50] | Underwater (uncontrolled) | N/A | CME-YOLOv5 | 0.95 1 |
Lin et al. [51] | Underwater (controlled) | Golden crucian carp | YOLOv5, DNN regression, AlexNet | 0.9 2 |
Liu et al. [52] | Underwater (uncontrolled) | N/A | Adaptive multi-scale Gaussian background model | 0.51 5 |
Marini et al. [53] | Underwater (uncontrolled) | N/A | Genetic programming | 0.98 6 |
Marini et al. [54] | Underwater (uncontrolled) | N/A | Genetic programming | 0.92 6 |
Park and Kang [55] | Underwater (uncontrolled) | Bluegill, Largemouth | YOLOv2 | 0.94–0.97 4 |
Salman et al. [10] | Underwater (Fish4Knowledge) | 15 species | GMM, region-based CNN | 0.80–0.87 2 |
Zhang et al. [56] | Underwater (uncontrolled) | Atlantic salmon | CNN | 0.95 1 |
Zhao et al. [38] | Underwater (controlled) | Porphyry seabream | YOLOv4 with MobileNetV3 backbone | 0.95 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbedo, J.G.A. A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes 2022, 7, 335. https://doi.org/10.3390/fishes7060335
Barbedo JGA. A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes. 2022; 7(6):335. https://doi.org/10.3390/fishes7060335
Chicago/Turabian StyleBarbedo, Jayme Garcia Arnal. 2022. "A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management" Fishes 7, no. 6: 335. https://doi.org/10.3390/fishes7060335
APA StyleBarbedo, J. G. A. (2022). A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes, 7(6), 335. https://doi.org/10.3390/fishes7060335