Bone Grafts in Craniofacial Surgery
Abstract
:Mechanism of Action of Bone Grafts
Types of Bone Grafts
Incorporation of Bone Grafts into the Recipient Site
- Hematoma formation, release of bone inducing factors and cellular recruitment
- Inflammation and development of fibrovascular tissue, connecting the graft to the adjacent bone
- Vascular invasion of the graft
- Focal resorption of the graft by recruited osteoclasts
- New bone formation, union between the graft and the surrounding bone, and graft remodeling
Sources of Autogenous Bone Grafts for Craniofacial Reconstruction
Free Nonvascularized Bone Grafts
Iliac Crest
Calvarial Graft
- Thickness of the calvarium is highly variable to the point of being unpredictable, even within the parietal region [43]. Preoperative radiographic measurement of the bone thickness should give an idea of the area of bone that can safely be harvested.
- The dura is tightly adherent to the inner cortex and can easily be injured if the inner cortex is to be harvested with the graft.
- Various important vascular structures exist immedi- ately beneath the bone at various sites, including the superior sagittal sinus in the midline.
- The two cortices fuse together and the bone can become quite thin laterally and inferiorly to the temporal line, the attachment of the temporalis muscle, and at suture sites.
- Other anatomic variables, including transcortical emissary veins, subcortical vessels, and aberrant ara- chnoid plexuses (within the cortical calvarium), should also be considered [42].
Chin Graft
Retromolar Graft
Tibial Graft
Rib Graft
Reimplantation of Resected Bone Segments
Regional Pedicled Bone Grafts
Pedicled Rib
Pedicled Clavicle
Pedicled Temporal Bone
Vascularized Bone Grafts
Alloplastic Bone Grafts in Craniofacial Reconstruction
Synthetic Bone Substitutes and Bone Augmenting Factors
Future Directions
References
- Meekeren, J.J. Observationes Medico-Chirugicae; Ex Officina Henrici & Vidnae Theodori Boom: Amsterdam, The Netherlands, 1682. [Google Scholar]
- Sanan, A.; Haines, S.J. Repairing holes in the head: a history of cranioplasty. Neurosurgery 1997, 40, 588–603. [Google Scholar] [PubMed]
- Macewen, W. Observations concerning transplantation of bone illustrated by a case of inter-human osseous trans- plantation, whereby over two-thirds of the shaft of a humerus was restored. Proc Roy Soc Lond 1881, 32, 232–247. [Google Scholar]
- Meikle, M.C. On the transplantation, regeneration and induction of bone: the path to bone morphogenetic proteins and other skeletal growth factors. Surgeon 2007, 5, 232–243. [Google Scholar] [CrossRef]
- Albee, F.H. Fundamentals in bone transplantation: experi- ences in three thousand bone graft operations. JAMA 1923, 81, 1429–1432. [Google Scholar] [CrossRef]
- Phemister, D.B. The fate of transplanted bone and regenerative power of its various constituents. Surg Gynecol Obstet 1914, 19, 303–333. [Google Scholar]
- Phemester, D. Treatment of ununited fractures by onlay bone grafts without screw or tie fixation and without breaking down of fibrous union. J Bone Joint Surg Am 1947, 29, 946–960. [Google Scholar]
- Bauer, T.W.; Muschler, G.F. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000, 371, 10–27. [Google Scholar] [CrossRef]
- Khan, S.N.; Cammisa, F.P., Jr.; Sandhu, H.S.; Diwan, A.D.; Girardi, F.P.; Lane, J.M. The biology of bone grafting. J Am Acad Orthop Surg 2005, 13, 77–86. [Google Scholar] [CrossRef]
- Laurencin, C.T.; El-Amin, S.F. Xenotransplantation in orthopaedic surgery. J Am Acad Orthop Surg 2008, 16, 4–8. [Google Scholar] [CrossRef]
- Boden, S.D. The ABCs of BMPs. Orthop Nurs 2005, 24, 49–52quiz. [Google Scholar] [CrossRef]
- Boyne, P.J.; Salina, S.; Nakamura, A.; Audia, F.; Shabahang, S. Bone regeneration using rhBMP-2 induction in hemi- mandibulectomy type defects of elderly sub-human pri- mates. Cell Tissue Bank 2006, 7, 1–10. [Google Scholar] [CrossRef]
- Seto, I.; Marukawa, E.; Asahina, I. Mandibular reconstruction using a combination graft of rhBMP-2 with bone marrow cells expanded in vitro. Plast Reconstr Surg 2006, 117, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R.; Sato, K.; Brownell, A.G.; et al. Human bone morphogenetic protein (hBMP). Proc Soc Exp Biol Med 1983, 173, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Wikesjo¨, U.M.; Qahash, M.; Thomson, R.C.; et al. rhBMP-2 significantly enhances guided bone regeneration. Clin Oral Implants Res 2004, 15, 194–204. [Google Scholar] [CrossRef]
- Geiger, F.; Lorenz, H.; Xu, W.; et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007, 41, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Koefoed, M.; Tiyapatanaputi, P.; et al. Remodeling of cortical bone allografts mediated by adherent rAAV- RANKL and VEGF gene therapy. Nat Med 2005, 11, 291–297. [Google Scholar] [CrossRef]
- Peng, H.; Usas, A.; Olshanski, A.; et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005, 20, 2017–2027. [Google Scholar] [CrossRef]
- Dell, P.C.; Burchardt, H.; Glowczewskie, F.P., Jr. A roentgeno- graphic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg Am 1985, 67, 105–112. [Google Scholar] [CrossRef]
- Goldberg, V.M.; Stevenson, S. Natural history of autografts and allografts. Clin Orthop Relat Res 1987, 225, 7–16. [Google Scholar] [CrossRef]
- Stevenson, S.; Li, X.Q.; Davy, D.T.; Klein, L.; Goldberg, V.M. Critical biological determinants of incorporation of non- vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg Am 1997, 79, 1–16. [Google Scholar] [CrossRef]
- Myers, R.A.; Marx, R.E. Use of hyperbaric oxygen in postradiation head and neck surgery. NCI Monogr 1990, 9, 151–157. [Google Scholar]
- Vudiniabola, S.; Pirone, C.; Williamson, J.; Goss, A.N. Hyper- baric oxygen in the therapeutic management of osteoradio- necrosis of the facial bones. Int J Oral Maxillofac Surg 2000, 29, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Cimsit, M.; Ilgezdi, S.; et al. Hyperbaric oxygen therapy used to treat radiation injury: two case reports. Ostomy Wound Manage 2006, 52, 14–16. [Google Scholar]
- Burwell, R.G. Studies in the transplantation of bone. V. The capacity of fresh and treated homografts of bone to evoke transplantation immunity. J Bone Joint Surg Br 1963, 45-B, 386–401. [Google Scholar] [CrossRef]
- Chalmers, J. Transplantation immunity in bone homografting. J Bone Joint Surg Br 1959, 41-B, 160–179. [Google Scholar] [CrossRef]
- De Bruyn, P.P.; Kabisch, W.T. Bone formation by fresh and frozen, autogenous and homogenous transplants of bone, bone marrow and periosteum. Am J Anat 1955, 96, 375–417. [Google Scholar] [CrossRef]
- Heiple, K.G.; Chase, S.W.; Herndon, C.H. A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg Am 1963, 45, 1593–1616. [Google Scholar] [CrossRef]
- Kruyt, M.C.; Dhert, W.J.; Oner, C.; van Blitterswijk, C.A.; Verbout, A.J.; de Bruijn, J.D. Osteogenicity of autologous bone transplants in the goat. Transplantation 2004, 77, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Tominaga, S.; Shibata, T. Bone grafts with micro- vascular anastomoses of vascular pedicles: an experimental study in dogs. J Bone Joint Surg Am 1977, 59, 809–815. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, C.; Lin, A.S.; et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 2005, 20, 2124–2137. [Google Scholar] [CrossRef]
- Gu¨ ven, O. Rehabilitation of severely atrophied mandible using free iliac crest bone grafts and dental implants: report of two cases. J Oral Implantol 2007, 33, 122–126. [Google Scholar] [CrossRef]
- Laine, J.; Va¨ha¨talo, K.; Peltola, J.; Tammisalo, T.; Happonen, R.P. Rehabilitation of patients with congenital unrepaired cleft palate defects using free iliac crest bone grafts and dental implants. Int J Oral Maxillofac Implants 2002, 17, 573–580. [Google Scholar] [PubMed]
- Sekine, J.; Sano, K.; Ikeda, H.; Inokuchi, T. Rehabilitation by means of osseointegrated implants in oral cancer patients with about four to six years follow-up. J Oral Rehabil 2006, 33, 170–174. [Google Scholar] [CrossRef]
- Pogrel, M.A.; Podlesh, S.; Anthony, J.P.; Alexander, J. A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. J Oral Maxillofac Surg 1997, 55, 1200–1206. [Google Scholar] [CrossRef]
- Foster, R.D.; Anthony, J.P.; Sharma, A.; Pogrel, M.A. Vascular- ized bone flaps versus nonvascularized bone grafts for mandibular reconstruction: an outcome analysis of primary bony union and endosseous implant success. Head Neck 1999, 21, 66–71. [Google Scholar] [CrossRef]
- Ahlmann, E.; Patzakis, M.; Roidis, N.; Shepherd, L.; Holtom, P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 2002, 84-A, 716–720. [Google Scholar] [CrossRef]
- Boone, D.W. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin 2003, 8, 1–14. [Google Scholar] [CrossRef]
- Nocini, P.F.; Bedogni, A.; Valsecchi, S.; et al. Fractures of the iliac crest following anterior and posterior bone graft harvesting. Review of the literature and case presentation. Minerva Stomatol 2003, 52, 441–448. [Google Scholar] [PubMed]
- Velchuru, V.R.; Satish, S.G.; Petri, G.J.; Sturzaker, H.G. Hernia through an iliac crest bone graft site: report of a case and review of the literature. Bull Hosp Jt Dis 2006, 63, 166–168. [Google Scholar]
- Zijderveld, S.A.; ten Bruggenkate, C.M.; van Den Bergh, J.P.; Schulten, E.A. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery: report of 3 cases and review of the literature. J Oral Maxillofac Surg 2004, 62, 781–786. [Google Scholar] [CrossRef]
- Frodel, J.L. Calvarial bone graft harvesting techniques: considerations for their use with rigid fixation techniques in the craniomaxillofacial region. In Craniomaxillofacial Reconstructive and Corrective Bone Surgery; Greenberg, A., Prein, J., Eds.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Pensler, J.; McCarthy, J.G. The calvarial donor site: an anatomic study in cadavers. Plast Reconstr Surg 1985, 75, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Powell, N.B.; Riley, R.W. Cranial bone grafting in facial aesthetic and reconstructive contouring. Arch Otolaryngol Head Neck Surg 1987, 113, 713–719. [Google Scholar] [CrossRef]
- Ehrenfeld, M.; Hagenmaier, C. Autogenous bone grafts in maxillofacial reconstruction. In Craniomaxillofacial Reconstructive and Corrective Bone Surgery; Greenberg, A., Prein, J., Eds.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gu¨ zel, M.Z.; Arslan, H.; Sarac¸, M. Mandibular condyle reconstruction with inlay application of autogenous costo- chondral graft after condylectomy: Cerrahpaa’s technique. J Oral Maxillofac Surg 2007, 65, 615–620. [Google Scholar] [CrossRef]
- Medra, A.M. Follow up of mandibular costochondral grafts after release of ankylosis of the temporomandibular joints. Br J Oral Maxillofac Surg 2005, 43, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Poswillo, D.E. Biological reconstruction of the mandibular condyle. Br J Oral Maxillofac Surg 1987, 25, 100–104. [Google Scholar] [CrossRef]
- Troulis, M.J.; Tayebaty, F.T.; Papadaki, M.; Williams, W.B.; Kaban, L.B. Condylectomy and costochondral graft recon- struction for treatment of active idiopathic condylar resorption. J Oral Maxillofac Surg 2008, 66, 65–72. [Google Scholar] [CrossRef]
- Peltoma¨ki, T.; Isotupa, K. The costochondral graft: a solution or a source of facial asymmetry in growing children. A case report. Proc Finn Dent Soc 1991, 87, 167–176. [Google Scholar]
- Siavosh, S.; Ali, M. Overgrowth of a costochondral graft in a case of temporomandibular joint ankylosis. J Craniofac Surg 2007, 18, 1488–1491. [Google Scholar] [CrossRef]
- Bradley, P.F. A two-stage procedure for reimplantation of autogenous freeze-treated mandibular bone. J Oral Max- illofac Surg 1982, 40, 278–284. [Google Scholar] [CrossRef]
- Marciani, R.D.; Giansanti, J.S.; Massey, G.B. Reimplantation of freeze-treated and saline-treated mandibular bone. J Oral Surg 1976, 34, 314–319. [Google Scholar]
- Plezia, R.A.; Weaver, A.W.; Pietruk, T.; Gilbert, H.D. Evaluation of osteogenesis following immediate and delayed reimplan- tation of frozen autogenous mandibular bone. Oral Surg Oral Med Oral Pathol 1983, 56, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Arrigoni, G. Reimplantation of the mandibular condyle in cases of intraoral resection and reconstruction of the mandible. J Maxillofac Surg 1979, 7, 1–5. [Google Scholar] [CrossRef]
- Cuono, C.B.; Ariyan, S. Immediate reconstruction of a composite mandibular defect with a regional osteomuscu- locutaneous flap. Plast Reconstr Surg 1980, 65, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Biller, H.F.; Krespi, Y.P.; Lawson, W.; Baek, S.M. A one-stage flap reconstruction following resection for stomal recur- rence. Otolaryngol Head Neck Surg 1980, 88, 357–360. [Google Scholar] [CrossRef]
- Lam, K.H.; Wei, W.I.; Siu, K.F. The pectoralis major costomyocutaneous flap for mandibular reconstruction. Plast Reconstr Surg 1984, 73, 904–910. [Google Scholar] [CrossRef]
- Tovi, F.; Gittot, A. Sternocleidomastoid myoperiosteal flap for the repair of laryngeal and tracheal wall defects. Head Neck Surg 1983, 5, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Siemssen, S.O.; Kirkby, B.; O’Connor, T.P. Immediate reconstruction of a resected segment of the lower jaw, using a compound flap of clavicle and sternomastoid muscle. Plast Reconstr Surg 1978, 61, 724–735. [Google Scholar] [CrossRef]
- Urken, M.L.; Biller, H.F. Muscle and musculocutaneous flaps: sternocleidomastoid. In Atlas of Regional and Free Flaps for Head and Neck Reconstruction; Urken, M.L., Cheney, M.L., Sullivan, M.J., Eds.; Raven Press: New York, NY, USA, 1995. [Google Scholar]
- Cheney, M.L. Muscle and musculocutaneous flaps: tempo- ralis. In Atlas of Regional and Free Flaps for Head and Neck Reconstruction; Urken, M.L., Cheney, M.L., Sullivan, M.J., Eds.; Raven Press: New York, NY, USA, 1995. [Google Scholar]
- Cheney, M.L.; McKenna, M.J.; Megerian, C.A.; Ojemann, R.G. Early temporalis muscle transposition for the management of facial paralysis. Laryngoscope 1995, 105 Pt 1, 993–1000. [Google Scholar] [CrossRef]
- Rubin, L.R.; Mishriki, Y.; Lee, G. Anatomy of the nasolabial fold: the keystone of the smiling mechanism. Plast Reconstr Surg 1989, 83, 1–10. [Google Scholar] [CrossRef]
- Chana, J.S.; Chang, Y.M.; Wei, F.C.; et al. Segmental mandibulectomy and immediate free fibula osteoseptocuta- neous flap reconstruction with endosteal implants: an ideal treatment method for mandibular ameloblastoma. Plast Reconstr Surg 2004, 113, 80–87. [Google Scholar] [CrossRef]
- Haughey, B.H.; Wilson, E.; Kluwe, L.; et al. Free flap reconstruction of the head and neck: analysis of 241 cases. Otolaryngol Head Neck Surg 2001, 125, 10–17. [Google Scholar] [CrossRef]
- Keller, E.E.; Tolman, D.E.; Eckert, S. Endosseous implant and autogenous bone graft reconstruction of mandibular dis- continuity: a 12-year longitudinal study of 31 patients. Int J Oral Maxillofac Implants 1998, 13, 767–780. [Google Scholar] [PubMed]
- Komisar, A. The functional result of mandibular recon- struction. Laryngoscope 1990, 100, 364–374. [Google Scholar] [CrossRef]
- Chen, T.M.; Wang, H.J. Cranioplasty using allogeneic perforated demineralized bone matrix with autogenous bone paste. Ann Plast Surg 2002, 49, 272–277. [Google Scholar] [CrossRef]
- Moss, S.D.; Joganic, E.; Manwaring, K.H.; Beals, S.P. Trans- planted demineralized bone graft in cranial reconstructive surgery. Pediatr Neurosurg 1995, 23, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Salyer, K.E.; Bardach, J.; Squier, C.A.; Gendler, E.; Kelly, K.M. Cranioplasty in the growing canine skull using demineral- ized perforated bone. Plast Reconstr Surg 1995, 96, 770–779. [Google Scholar] [CrossRef]
- Salyer, K.E.; Gendler, E.; Menendez, J.L.; Simon, T.R.; Kelly, K.M.; Bardach, J. Demineralized perforated bone implants in craniofacial surgery. J Craniofac Surg 1992, 3, 55–62. [Google Scholar] [CrossRef]
- Salyer, K.E.; Gendler, E.; Squier, C.A. Long-term outcome of extensive skull reconstruction using demineralized perfo- rated bone in Siamese twins joined at the skull vertex. Plast Reconstr Surg 1997, 99, 1721–1726. [Google Scholar] [CrossRef]
- Bae, H.W.; Zhao, L.; Kanim, L.E.; Wong, P.; Delamarter, R.B.; Dawson, E.G. Intervariability and intravariability of bone morphogenetic proteins in commercially available deminer- alized bone matrix products. Spine 2006, 31, 1299–1306dis. [Google Scholar] [CrossRef] [PubMed]
- Elsalanty, M.E.; Por, Y.C.; Genecov, D.G.; et al. Recombinant human BMP-2 enhances the effects of materials used for reconstruction of large cranial defects. J Oral Maxillofac Surg 2008, 66, 277–285. [Google Scholar] [CrossRef]
- Por, Y.C.; Barcelo’, C.R.; Salyer, K.E.; et al. Bone generation in the reconstruction of a critical size calvarial defect in an experimental model. Ann Acad Med Singapore 2007, 36, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.G.; Hoyland, J.; Andrew, S.M.; Freemont, A.J.; Marsh, D. Demonstration of TGF-beta 1 mRNA by in situ hybridization in normal human fracture healing. Calcif Tissue Int 1993, 52, 74–78. [Google Scholar] [CrossRef]
- Bourque, W.T.; Gross, M.; Hall, B.K. Expression of four growth factors during fracture repair. Int J Dev Biol 1993, 37, 573–579. [Google Scholar]
- Lind, M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand 1996, 67, 407–417. [Google Scholar] [CrossRef]
- Massague’, J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990, 6, 597–641. [Google Scholar] [CrossRef] [PubMed]
- Barnes, G.L.; Kostenuik, P.J.; Gerstenfeld, L.C.; Einhorn, T.A. Growth factor regulation of fracture repair. J Bone Miner Res 1999, 14, 1805–1815. [Google Scholar] [CrossRef]
- Eingartner, C.; Coerper, S.; Fritz, J.; Gaissmaier, C.; Koveker, G.; Weise, K. Growth factors in distraction osteogenesis. Immuno-histological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop 1999, 23, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ishidou, Y.; Kitajima, I.; Obama, H.; et al. Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. J Bone Miner Res 1995, 10, 1651–1659. [Google Scholar] [CrossRef]
- Pacicca, D.M.; Patel, N.; Lee, C.; et al. Expression of angiogenic factors during distraction osteogenesis. Bone 2003, 33, 889–898. [Google Scholar] [CrossRef]
- Steinbrech, D.S.; Mehrara, B.J.; Saadeh, P.B.; et al. Hypoxia increases insulinlike growth factor gene expression in rat osteoblasts. Ann Plast Surg 2000, 44, 529–534. [Google Scholar] [CrossRef]
- Saijo, M.; Kitazawa, R.; Nakajima, M.; Kurosaka, M.; Maeda, S.; Kitazawa, S. Heparanase mRNA expression during fracture repair in mice. Histochem Cell Biol 2003, 120, 493–503. [Google Scholar] [CrossRef]
- Wallace, A.L.; Draper, E.R.; Strachan, R.K.; McCarthy, I.D.; Hughes, S.P. The vascular response to fracture micromove- ment. Clin Orthop Relat Res 1994, 301, 281–290. [Google Scholar] [CrossRef]
- Bouletreau, P.J.; Warren, S.M.; Spector, J.A.; et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 2002, 109, 2384–2397. [Google Scholar] [CrossRef] [PubMed]
- Sorescu, G.P.; Sykes, M.; Weiss, D.; et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem 2003, 278, 31128–31135. [Google Scholar] [CrossRef] [PubMed]
- von Schroeder, H.P.; Veillette, C.J.; Payandeh, J.; Qureshi, A.; Heersche, J.N. Endothelin-1 promotes osteoprogenitor pro- liferation and differentiation in fetal rat calvarial cell cultures. Bone 2003, 33, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Kaigler, D.; Wang, Z.; Horger, K.; Mooney, D.J.; Krebsbach, P.H. VEGF scaffolds enhance angiogenesis and bone regener- ation in irradiated osseous defects. J Bone Miner Res 2006, 21, 735–744. [Google Scholar] [CrossRef]
- Ripamonti, U.; Ma, S.S.; Cunningham, N.S.; Yeates, L.; Reddi, A.H. Reconstruction of the bone—bone marrow organ by osteogenin, a bone morphogenetic protein, and demineralized bone matrix in calvarial defects of adult primates. Plast Reconstr Surg 1993, 91, 27–36. [Google Scholar] [CrossRef]
- Kawase, T.; Okuda, K.; Saito, Y.; Amizuka, N.; Suzuki, H.; Yoshie, H. Platelet-rich plasma provides nucleus for mineralization in cultures of partially differentiated periodontal ligament cells. In Vitro Cell Dev Biol Anim 2005, 41, 171–176. [Google Scholar] [CrossRef]
- Kawase, T.; Okuda, K.; Wolff, L.F.; Yoshie, H. Platelet-rich plasma-derived fibrin clot formation stimulates collagen synthesis in periodontal ligament and osteoblastic cells in vitro. J Periodontol 2003, 74, 858–864. [Google Scholar] [CrossRef]
- Okuda, K.; Kawase, T.; Momose, M.; et al. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the pro- liferation of periodontally related cells in vitro. J Periodontol 2003, 74, 849–857. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, W.K.; Park, J.C.; Kim, H.J. A comparative study of osseointegration of Avana implants in a demineralized freeze-dried bone alone or with platelet-rich plasma. J Oral Maxillofac Surg 2002, 60, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Marden, L.J.; Fan, R.S.; Pierce, G.F.; Reddi, A.H.; Hollinger, J.O. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J Clin Invest 1993, 92, 2897–2905. [Google Scholar] [CrossRef] [PubMed]
- Pou, A.M. Update on new biomaterials and their use in reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg 2003, 11, 240–244. [Google Scholar] [CrossRef]
- Costantino, P.D.; Hiltzik, D.H.; Sen, C.; et al. Sphenoethmoid cerebrospinal fluid leak repair with hydroxyapatite cement. Arch Otolaryngol Head Neck Surg 2001, 127, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Petruzzelli, G.J.; Stankiewicz, J.A. Frontal sinus obliteration with hydroxyapatite cement. Laryngoscope 2002, 112, 32–36. [Google Scholar] [CrossRef]
- Baker, S.B.; Weinzweig, J.; Kirschner, R.E.; Bartlett, S.P. Applications of a new carbonated calcium phosphate bone cement: early experience in pediatric and adult craniofa- cial reconstruction. Plast Reconstr Surg 2002, 109, 1789–1796. [Google Scholar] [CrossRef]
- Costantino, P.D.; Hiltzik, D.; Govindaraj, S.; Moche, J. Bone healing and bone substitutes. Facial Plast Surg 2002, 18, 13–26. [Google Scholar] [CrossRef]
- Tiainen, J.; Leinonen, S.; Iloma¨ki, J.; et al. Comparison of the pull-out forces of bioabsorbable polylactide/glycolide screws (Biosorb and Lactosorb) and tacks: a study on the stability of fixation in human cadaver parietal bones. J Craniofac Surg 2002, 13, 538–543. [Google Scholar] [CrossRef]
- Wiltfang, J.; Merten, H.A.; Schultze-Mosgau, S.; Schrell, U.; We’nzel, D.; Kessler, P. Biodegradable miniplates (LactoSorb): long-term results in infant minipigs and clinical results. J Craniofac Surg 2000, 11, 239–243. [Google Scholar] [CrossRef]
- Genecov, D.G.; Kremer, M.; Agarwal, R.; et al. Norian craniofacial repair system: compatibility with resorbable and nonresorbable plating materials. Plast Reconstr Surg 2007, 120, 1487–1495. [Google Scholar] [CrossRef]
© 2008 by the author. The Author(s) 2008.
Share and Cite
Elsalanty, M.E.; Genecov, D.G. Bone Grafts in Craniofacial Surgery. Craniomaxillofac. Trauma Reconstr. 2009, 2, 125-134. https://doi.org/10.1055/s-0029-1215875
Elsalanty ME, Genecov DG. Bone Grafts in Craniofacial Surgery. Craniomaxillofacial Trauma & Reconstruction. 2009; 2(3):125-134. https://doi.org/10.1055/s-0029-1215875
Chicago/Turabian StyleElsalanty, Mohammed E., and David G. Genecov. 2009. "Bone Grafts in Craniofacial Surgery" Craniomaxillofacial Trauma & Reconstruction 2, no. 3: 125-134. https://doi.org/10.1055/s-0029-1215875
APA StyleElsalanty, M. E., & Genecov, D. G. (2009). Bone Grafts in Craniofacial Surgery. Craniomaxillofacial Trauma & Reconstruction, 2(3), 125-134. https://doi.org/10.1055/s-0029-1215875