Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data
Abstract
:Introduction
Materials and Methods
Search Strategy
- Original clinical reports and studies with human subjects
- Any age
- Reconstruction of segmental defects of the mandible with tissue engineering as primary treatment
- Description of any outcome measure: radiological, clinical, functional, or bone vitality
- Minimum follow-up of 3 months
- Providing IPD on at least 1 parameter of interest
- Articles in English language
- Published within the last 20 years (1999 onward)
- Noncontinuity defects of the mandible
- Continuity defects secondary to fracture malunion or nonunion
- Gunshot injuries and resection defects without specification of defect size
- Isolated condylar or temporomandibular joint reconstruction
- Tissue engineering used as adjunct to vascularized bone free flaps
- Use of distraction osteogenesis alone.
Study Selection
Data Extraction
Data Synthesis
- Prefabrication: Entails the construction of a tissue-engineered mandible inside the body of the patient but that is away from the target site of segmental mandible reconstruction. It considers the patient as a “bioreactor.” Typically, a scaffold with or without bioactive substances and autogenous bone with or without bone substitutes is implanted in a vascularized region of the patient’s own body. This construct remains embedded until the fabricated tissue is viable. The construct is then transferred onto the mandibular defect and anastomosed by microvascular techniques or following flap delays.[12,13,14,15]
- Cell culture: Mesenchymal stem cells and/or progenitors harvested from the patient’s bone marrow or adipose tissue are isolated in the laboratory, cultured under preferential conditions over a few passages, concentrated and transferred into the defect.
- Bone morphogenetic protein without autografts: Bone morphogenetic protein (BMP) alone is placed in an absorbable carrier and into the defect to promote bone regeneration.
- Bone morphogenetic protein with autografts: In addition to BMP, varying amounts and types of autogenous tissues were used for reconstruction: bone marrow aspirates, platelet-rich plasma (PRP), and/or corticocancellous bone grafts.
- Scaffolds containing autografts: Scaffolds that have anatomic similarity to the segmental reconstruction defect, additionally filled with autogenous bone graft and placed in the defect.
Treatment Data
Outcome Measures
Statistical Analysis
Results
Current Tissue Engineering Strategies
Included Study Characteristics
Baseline Patient and Defect Characteristics
General Treatment Information
Group-Specific Treatment Characteristics
Outcomes
Discussion
Strengths and Limitations
Conclusion
Funding
Conflicts of Interest
References
- Kumar, V.V.; Jacob, P.C.; Ebenezer, S.; et al. Implant supported dental rehabilitation following segmental mandibular reconstruction—quality of life outcomes of a prospective randomized trial. J Craniomaxillofac Surg. 2016, 44, 800–810. [Google Scholar] [PubMed]
- Brown, J.S.; Lowe, D.; Kanatas, A.; Schache, A. Mandibular reconstruction with vascularised bone flaps: a systematic review over 25 years. Br J Oral Maxillofac Surg. 2017, 55, 113–126. [Google Scholar] [PubMed]
- Sacco, A.G.; Chepeha, D.B. Current status of transport-discdistraction osteogenesis for mandibular reconstruction. Lancet Oncol. 2007, 8, 323–330. [Google Scholar]
- Kontio, R. Update on mandibular reconstruction: computer-aided design, imaging, stem cells and future applications. Curr Opin Otolaryngol Head Neck Surg. 2014, 22, 307–315. [Google Scholar]
- Chanchareonsook, N.; Junker, R.; Jongpaiboonkit, L.; Jansen, J.A. Tissue-engineered mandibular bone reconstruction for continuity defects: a systematic approach to the literature. Tissue Eng Part B Rev. 2014, 20, 147–162. [Google Scholar] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science (New York, NY). 1993, 260, 920–926. [Google Scholar]
- National Institute of Biomedical Imaging and Bioengineering. Tissue engineering and regenerative medicine. 2018. Available online: https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine (accessed on 16 October 2019).
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009, 62, e1–e34. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009, 339, b2535. [Google Scholar] [CrossRef]
- Stewart, L.A.; Clarke, M.; Rovers, M.; et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015, 313, 1657–1665. [Google Scholar]
- Jewer, D.D.; Boyd, J.B.; Manktelow, R.T.; et al. Orofacial and mandibular reconstruction with the iliac crest free flap: a review of 60 cases and a new method of classification. Plast Reconstr Surg. 1989, 84, 391–403. [Google Scholar]
- Warnke, P.H.; Springer, I.N.; Wiltfang, J.; et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet (London, England). 2004, 364, 766–770. [Google Scholar] [PubMed]
- Warnke, P.H.; Wiltfang, J.; Springer, I.; et al. Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials. 2006, 27, 3163–3167. [Google Scholar]
- Wiltfang, J.; Rohnen, M.; Egberts, J.H.; et al. Man as a living bioreactor: prefabrication of a custom vascularized bone graft in the gastrocolic omentum. Tissue Eng Part C Methods. 2016, 22, 740–746. [Google Scholar] [PubMed]
- Naujokat, H.; Acil, Y.; Gulses, A.; Birkenfeld, F.; Wiltfang, J. Man as a living bioreactor: long-term histological aspects of a mandibular replacement engineered in the patient’s own body. Int J Oral Maxillofac Surg. 2018, 47, 1481–1487. [Google Scholar]
- Marx, R.E.; Harrell, D.B. Translational research: the CD34+cell is crucial for large-volume bone regeneration from the milieu of bone marrow progenitor cells in craniomandibular reconstruction. Int J Oral Maxillofac Implants. 2014, 29, e201–e209. [Google Scholar]
- Rodrigues Arantes, E.B.; Cortezzi, W.; de Aguiar, A.B.; Merly, F.; Junior, V.M.; Netto, R. Reconstruction and mandibular rehabilitation after resection of juvenile aggressive ossifying fibroma using undifferentiated mesenchymal cells and osseointegrated implants: a case report. Implant dent. 2019, 28, 400–404. [Google Scholar] [PubMed]
- Stoor, P.; Suomalainen, A.; Mesimaki, K.; Kontio, R. Rapid prototyped patient specific guiding implants in critical mandibular reconstruction. J Craniomaxillofac Surg. 2017, 45, 63–70. [Google Scholar]
- Oliveira, M.R.; Gorla, L.F.; Gabrielli, M.A.; Pereira-Filho, V.A. Offlabel use of bone morphogenetic protein 2 in the reconstructions of mandibular continuity defects. J Craniofac Surg. 2017, 28, 227–230. [Google Scholar]
- Melville, J.C.; Nassari, N.N.; Hanna, I.A.; Shum, J.W.; Wong, M.E.; Young, S. Immediate transoral allogeneic bone grafting for large mandibular defects. Less morbidity, more bone. A paradigm in benign tumor mandibular reconstruction? J Oral Maxillofac Surg. 2017, 75, 828–838. [Google Scholar]
- Johnson, J.; Jundt, J.; Hanna, I.; Shum, J.W.; Badger, G.; Melville, J.C. Resection of an ameloblastoma in a pediatric patient and immediate reconstruction using a combination of tissue engineering and costochondral rib graft: a case report. J Am Dent Assoc. 2017, 148, 40–43. [Google Scholar]
- Yamada, H.; Nakaoka, K.; Sonoyama, T.; et al. Clinical usefulness of mandibular reconstruction using custom-made titanium mesh tray and autogenous particulate cancellous bone and marrow harvested from tibia and/or ilia. J Craniofac Surg. 2016, 27, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Melville, J.C.; Couey, M.A.; Tong, M.S.; Marx, R.E. Regeneration of a tooth in a tissue-engineered mandible after resection of a central giant cell tumor. Demonstrating evidence of functional matrix theory and ectodermal origin of teeth in a human model-a case report. J Oral Maxillofac Surg. 2017, 75, 850–857. [Google Scholar] [CrossRef]
- Kakabadze, A.; Mardaleishvili, K.; Loladze, G.; et al. Reconstruction of mandibular defects with autogenous bone and decellularized bovine bone grafts with freeze-dried bone marrow stem cell paracrine factors. Oncol Lett. 2017, 13, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, T.; Shigeta, Y.; Hirabayashi, R.; et al. Computer assisted mandibular reconstruction using a custom-made titan mesh tray and removable denture based on the top-down treatment technique. J Prosthodont Res. 2016, 60, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Rahim, I.; Salt, S.; Heliotis, M. Successful long-term mandibular reconstruction and rehabilitation using non-vascularised autologous bone graft and recombinant human BMP-7 with subsequent endosseous implant in a patient with bisphosphonate-related osteonecrosis of the jaw. Br J Oral Maxillofac Surg. 2015, 53, 870–874. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, B.C.; Kim, B.H.; Lee, J.I.; Lee, J. Up-and-coming mandibular reconstruction technique with autologous human bone marrow stem cells and iliac bone graft in patients with large bony defect. J Craniofac Surg. 2015, 26, e718–e720. [Google Scholar] [CrossRef]
- Lustosa, R.M.; Macedo Dde, V.; Iwaki, L.C.; et al. Continuity resection of the mandible after ameloblastoma—feasibility of oral rehabilitation with rhBMP-2 associated to bovine xenograft followed by implant installation. J Craniomaxillofac Surg. 2015, 43, 1553–1560. [Google Scholar] [CrossRef]
- Cicciu, M.; Herford, A.S.; Cicciu, D.; Tandon, R.; Maiorana, C. Recombinant human bone morphogenetic protein-2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. J Craniofac Surg. 2014, 25, 860–862. [Google Scholar] [CrossRef]
- Balaji, S.M. Protein-signaled guided total jaw regeneration in infantile total mandibular resection. Ann Maxillofac Surg. 2014, 4, 198–200. [Google Scholar] [CrossRef]
- Zamiri, B.; Shahidi, S.; Eslaminejad, M.B.; et al. Reconstruction of human mandibular continuity defects with allogenic scaffold and autologous marrow mesenchymal stem cells. J Craniofac Surg. 2013, 24, 1292–1297. [Google Scholar] [CrossRef]
- Yagihara, K.; Okabe, S.; Ishii, J.; et al. Mandibular reconstruction using a poly(L-lactide) mesh combined with autogenous particulate cancellous bone and marrow: a prospective clinical study. Int J Oral Maxillofac Surg. 2013, 42, 962–969. [Google Scholar]
- Wolff, J.; Sandor, G.K.; Miettinen, A.; et al. GMP-level adipose stem cells combined with computer-aided manufacturing to reconstruct mandibular ameloblastoma resection defects: Experience with three cases. Ann Maxillofac Surg. 2013, 3, 114–125. [Google Scholar]
- Desai, S.C.; Sclaroff, A.; Nussenbaum, B. Use of recombinant human bone morphogenetic protein 2 for mandible reconstruction. JAMA Facial Plast Surg. 2013, 15, 204–209. [Google Scholar]
- Hernandez-Alfaro, F.; Ruiz-Magaz, V.; Chatakun, P.; Guijarro-Martinez, R. Mandibular reconstruction with tissue engineering in multiple recurrent ameloblastoma. Int J Periodontics Restorative Dent. 2012, 32, e82–e86. [Google Scholar] [PubMed]
- Cicciu, M.; Herford, A.S.; Stoffella, E.; Cervino, G.; Cicciu, D. Protein-signaled guided bone regeneration using titanium mesh and Rh-BMP2 in oral surgery: a case report involving left mandibular reconstruction after tumor resection. Open Dent J 2012, 6, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Zetola, A.; Ferreira, F.M.; Larson, R.; Shibli, J.A. Recombinant human bone morphogenetic protein-2 (rhBMP-2) in the treatment of mandibular sequelae after tumor resection. Oral Maxillofac Surg. 2011, 15, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, A.; Chiba, H.; Toyoda, J.; et al. Mandibular reconstruction using a tray with particulate cancellous bone and marrow and platelet-rich plasma by an intraoral approach. J Oral Maxillofac Surg. 2011, 69, 1807–1814. [Google Scholar]
- Mooren, R.E.; Merkx, M.A.; Kessler, P.A.; Jansen, J.A.; Stoelinga, P.J. Reconstruction of the mandible using preshaped 2.3-mm titanium plates, autogenous cortical bone plates, particulate cancellous bone, and platelet-rich plasma: a retrospective analysis of 20 patients. J Oral Maxillofac Surg. 2010, 68, 2459–2467. [Google Scholar]
- Lee, J.; Sung, H.M.; Jang, J.D.; Park, Y.W.; Min, S.K.; Kim, E.C. Successful reconstruction of 15-cm segmental defects by bone marrow stem cells and resected autogenous bone graft in central hemangioma. J Oral Maxillofac Surg. 2010, 68, 188–194. [Google Scholar]
- Kokemueller, H.; Spalthoff, S.; Nolff, M.; et al. Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg. 2010, 39, 379–387. [Google Scholar]
- Herford, A.S.; Cicciu, M. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. J Craniofac Surg. 2010, 21, 1970–1975. [Google Scholar]
- Leonhardt, H.; Pradel, W.; Mai, R.; Markwardt, J.; Lauer, G. Prefabricated bony radial forearm flap for secondary mandible reconstruction after radiochemotherapy. Head Neck. 2009, 31, 1579–1587. [Google Scholar]
- Iino, M.; Fukuda, M.; Nagai, H.; et al. Evaluation of 15 mandibular reconstructions with Dumbach Titan Mesh-System and particulate cancellous bone and marrow harvested from bilateral posterior ilia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009, 107, e1–e8. [Google Scholar] [PubMed]
- Herford, A.S. rhBMP-2 as an option for reconstructing mandibular continuity defects. J Oral Maxillofac Surg. 2009, 67, 2679–2684. [Google Scholar]
- Balaji, S.M. Mandibular cystic defect: a composite approach with rhBMP-2 and rib graft. J Maxillofac Oral Surg. 2009, 8, 27–30. [Google Scholar] [PubMed]
- Herford, A.S.; Boyne, P.J. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg. 2008, 66, 616–624. [Google Scholar] [PubMed]
- Clokie, C.M.; Sandor, G.K. Reconstruction of 10 major mandibular defects using bioimplants containing BMP-7. J Can Dent Assoc. 2008, 74, 67–72. [Google Scholar]
- Carter, T.G.; Brar, P.S.; Tolas, A.; Beirne, O.R. Off-label use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for reconstruction of mandibular bone defects in humans. J Oral Maxillofac Surg. 2008, 66, 1417–1425. [Google Scholar]
- Herford, A.S.; Boyne, P.J.; Williams, R.P. Clinical applications of rhBMP-2 in maxillofacial surgery. J Calif Dent Assoc. 2007, 35, 335–341. [Google Scholar]
- Simon, E.N.; Merkx, M.A.; Shubi, F.M.; Kalyanyama, B.M.; Stoelinga, P.J. Reconstruction of the mandible after ablative surgery for the treatment of aggressive, benign odontogenic tumours in Tanzania: a preliminary study. Int J Oral Maxillofac Surg. 2006, 35, 421–426. [Google Scholar]
- Heliotis, M.; Lavery, K.M.; Ripamonti, U.; Tsiridis, E.; di Silvio, L. Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularised pedicled bone flap in the human chest. Int J Oral Maxillofac Surg. 2006, 35, 265–269. [Google Scholar]
- Chao, M.; Donovan, T.; Sotelo, C.; Carstens, M.H. In situ osteo-genesis of hemimandible with rhBMP-2 in a 9-year-old boy: osteoinduction via stem cell concentration. J Craniofac Surg. 2006, 17, 405–412. [Google Scholar] [CrossRef]
- Rochanawutanon, S.; Suddhasthira, T.; Pairuchvej, V.; Vajaradul, Y. Long term follow-up of reconstruction with allogeneic mandibular bone crib packed with autogenous particulate cancellous bone marrow. Cell Tissue Bank. 2002, 3, 183–197. [Google Scholar] [PubMed]
- Kiyokawa, K.; Tai, Y.; Tanaka, S.; Inoue, Y. A new regenerative approach to oromandibular reconstruction after the resection of head and neck malignant tumor. J Craniofac Surg. 2002, 13, 337–346. [Google Scholar] [PubMed]
- Ferretti, C.; Ripamonti, U. Human segmental mandibular defects treated with naturally derived bone morphogenetic proteins. J Craniofac Surg. 2002, 13, 434–444. [Google Scholar] [PubMed]
- Moghadam, H.G.; Urist, M.R.; Sandor, G.K.; Clokie, C.M. Successful mandibular reconstruction using a BMP bioimplant. J Craniofac Surg. 2001, 12, 119–127. [Google Scholar]
- Orringer, J.S.; Shaw, W.W.; Borud, L.J.; Freymiller, E.G.; Wang, S.A.; Markowitz, B.L. Total mandibular and lower lip reconstruction with a prefabricated osteocutaneous free flap. Plast Reconstr Surg. 1999, 104, 793–797. [Google Scholar]
- Sandor, G.K.; Numminen, J.; Wolff, J.; et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014, 3, 530–540. [Google Scholar]
- Matsuo, A.; Chiba, H.; Takahashi, H.; Toyoda, J.; Hasegawa, O.; Hojo, S. Bone quality of mandibles reconstructed with particulate cellular bone and marrow, and platelet-rich plasma. J Craniomaxillofac Surg. 2011, 39, 628–632. [Google Scholar] [CrossRef]
- Sandor, G.K.; Tuovinen, V.J.; Wolff, J.; et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. Int J Oral Maxillofac Surg. 2013, 71, 938–950. [Google Scholar]
- Yamada, H.; Nakaoka, K.; Horiuchi, T.; et al. Mandibular reconstruction using custom-made titanium mesh tray and particulate cancellous bone and marrow harvested from bilateral posterior ilia. J Plast Surg Hand Surg. 2014, 48, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Thor, A.; Palmquist, A.; Hirsch, J.M.; Rannar, L.E.; Derand, P. Omar Clinical, morphological, and molecular evaluations of bone regeneration with an additive manufactured osteosynthesis plate. J Craniofac Surg. 2016, 27, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. The Authors 2020.
Share and Cite
Kumar, V.V.; Rometsch, E.; Thor, A.; Wolvius, E.; Hurtado-Chong, A. Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data. Craniomaxillofac. Trauma Reconstr. 2020, 13, 267-284. https://doi.org/10.1177/1943387520917511
Kumar VV, Rometsch E, Thor A, Wolvius E, Hurtado-Chong A. Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data. Craniomaxillofacial Trauma & Reconstruction. 2020; 13(4):267-284. https://doi.org/10.1177/1943387520917511
Chicago/Turabian StyleKumar, Vinay V., Elke Rometsch, Andreas Thor, Eppo Wolvius, and Anahí Hurtado-Chong. 2020. "Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data" Craniomaxillofacial Trauma & Reconstruction 13, no. 4: 267-284. https://doi.org/10.1177/1943387520917511
APA StyleKumar, V. V., Rometsch, E., Thor, A., Wolvius, E., & Hurtado-Chong, A. (2020). Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data. Craniomaxillofacial Trauma & Reconstruction, 13(4), 267-284. https://doi.org/10.1177/1943387520917511