Assessing the Environmental Impact of Fiscal Consolidation in OECD Countries: Evidence from the Panel QARDL Approach
Abstract
1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results and Interpretation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Panel A | |||||
---|---|---|---|---|---|
Quantile | FC | FDI | URB | GDP | |
10th | −0.0033 (0.0030) | −0.0001 (0.0005) | 0.7022 *** (0.1118) | −0.0031 * (0.0016) | −0.9302 *** (0.0395) |
20th | −0.0028 (0.0022) | −0.0001 (0.0004) | 0.7117 *** (0.0813) | −0.0029 ** (0.0012) | −0.9364 *** (0.0287) |
30th | −0.0030 * (0.0017) | −0.0002 (0.0070) | 0.7188 *** (0.0064) | −0.0002 *** (0.0009) | −0.9410 *** (0.0228) |
40th | −0.0035 ** (0.0017) | −0.0001 (0.0003) | 0.7724 *** (0.0661) | −0.0314 * (0.0187) | −0.9410 *** (0.0224) |
50th | −0.0036 ** (0.0016) | −0.0002 (0.0026) | 0.7716 *** (0.0637) | −0.0287 (0.0181) | −0.9412 *** (0.0216) |
60th | −0.0036 ** (0.0016) | −0.0002 (0.0003) | 0.7704 *** (0.0661) | −0.0247 (0.1999) | −0.9412 *** (0.0224) |
70th | −0.0037 * (0.0019) | −0.0003 (0.0003) | 0.7690 *** (0.0765) | −0.0202 (0.2173) | −0.9412 *** (0.0259) |
80th | −0.0037 * (0.0023) | −0.0003 (0.0004) | 0.7676 *** (0.0987) | −0.0141 (0.0263) | −0.9412 *** (0.0314) |
90th | −0.0037 * (0.0023) | −0.0003 (0.0003) | 0.7676 *** (0.0932) | −0.1546 (0.0265) | −0.9413 *** (0.0316) |
Panel B | |||||
10th | 0.0164 ** (0.0066) | 0.0029 ** (0.0011) | −0.0053 (0.0043) | −0.0029 *** (0.0008) | |
20th | 0.0109 ** (0.0043) | 0.0026 *** (0.0009) | −0.0059 * (0.0034) | −0.0027 *** (0.0006) | |
30th | 0.0069 (0.0044) | 0.0025 *** (0.0007) | −0.0065 ** (0.0028) | −0.0026 *** (0.0005) | |
40th | 0.0033 (0.0036) | 0.0023 *** (0.0006) | −0.0069 *** (0.0024) | −0.0025 *** (0.0004) | |
50th | −0.0005 (0.0034) | 0.0021 *** (0.0005) | −0.0074 *** (0.0020) | −0.0024 *** (0.0003) | |
60th | −0.0072 ** (0.0035) | 0.0018 *** (0.0006) | −0.0083 *** (0.0021) | −0.0021 *** (0.0004) | |
70th | −0.0076 ** (0.0035) | 0.0017 *** (0.0006) | −0.0085 *** (0.0023) | −0.0021 *** (0.0004) | |
80th | −0.0121 *** (0.0042) | 0.0016 ** (0.0007) | −0.0089 *** (0.0027) | −0.0020 *** (0.0004) | |
90th | −0.0171 *** (0.0051) | 0.0014 (0.0009) | −0.0096 *** (0.0034) | −0.0018 *** (0.0006) |
Panel A | ||||||
---|---|---|---|---|---|---|
Quantile | FC | FDI | URB | ENVTAX | GDP | |
10th | −0.1005 (0.0989) | 0.4345 *** (0.1369) | −0.1091 *** (0.0317) | −0.5662 (0.5102) | −4.0617 (2.7423) | −8.8386 * (5.4762) |
20th | −0.1060 (0.0753) | 0.4194 *** (0.1078) | −0.1122 *** (0.0248) | −0.4451 (0.3855) | −5.1448 ** (2.1282) | −8.4377 ** (4.2683) |
30th | −0.1224 ** (0.0592) | 0.4406 *** (0.0889) | −0.1170 *** (0.0202) | −0.5833 * (0.3063) | −5.6630 *** (1.7278) | −5.6526 * (3.1704) |
40th | −0.1262 ** (0.0584) | 0.4385 *** (0.0877) | −0.1172 *** (0.0199) | −0.5769 * (0.3023) | −5.7025 *** (1.7056) | −5.7540 * (3.1298) |
50th | −0.1473 *** (0.0558) | 0.4268 *** (0.0841) | −0.1179 *** (0.0191) | −0.5406 * (0.2897) | −5.9251 *** (1.6341) | −6.3268 ** (2.9970) |
60th | −0.1717 *** (0.0572) | 0.4132 *** (0.0862) | −0.1188 *** (0.0196) | −0.4987 * (0.2972) | −6.1821 *** (1.6763) | −6.9879 ** (3.0738) |
70th | −0.2027 *** (0.0651) | 0.3959 *** (0.0981) | −0.1199 *** (0.0223) | −0.4452 (0.3379) | −6.5099 *** (1.9060) | −7.8314 ** (3.4952) |
80th | −0.2349 *** (0.0778) | 0.3781 *** (0.1177) | −0.1211 *** (0.0268) | −0.3899 (0.4057) | −6.8495 *** (2.2878) | −8.7049 ** (4.1928) |
90th | −0.2695 *** (0.0949) | 0.3589 ** (0.1438) | −0.1223 *** (0.0328) | −0.3305 (0.4956) | −7.2137 *** (2.7945) | −9.6421 * (5.1198) |
Panel B | ||||||
10th | 0.0046 (0.0063) | 0.0339 *** (0.0106) | −0.0065 *** (0.0024) | −0.0426 (0.0335) | −0.3039 * (0.1642) | |
20th | −0.0022 (0.0039) | 0.0288 *** (0.0065) | −0.0066 *** (0.0015) | −0.0353 * (0.0205) | −0.3285 *** (0.1002) | |
30th | −0.0053 * (0.0031) | 0.0265 *** (0.0051) | −0.0067 *** (0.0012) | −0.0319 ** (0.0160) | −0.3399 *** (0.0783) | |
40th | −0.0059 ** (0.0030) | 0.0260 *** (0.0049) | −0.0067 *** (0.0011) | −0.0312 ** (0.0154) | −0.3422 *** (0.0752) | |
50th | −0.0081 *** (0.0027) | 0.0244 *** (0.0045) | −0.0068 *** (0.0010) | −0.0288 ** (0.0141) | −0.3503 *** (0.0690) | |
60th | −0.0100 *** (0.0027) | 0.0230 *** (0.0045) | −0.0068 *** (0.0010) | −0.0268 * (0.0144) | −0.3570 *** (0.0705) | |
70th | −0.0115 *** (0.0029) | 0.0219 *** (0.0049) | −0.0068 *** (0.0011) | −0.0252 * (0.0155) | −0.3624 *** (0.0760) | |
80th | −0.0137 *** (0.0035) | 0.0202 *** (0.0058) | −0.0069 *** (0.0013) | −0.0227 (0.0183) | −0.3707 *** (0.0899) | |
90th | −0.0157 *** (0.0041) | 0.0187 *** (0.0068) | −0.0069 *** (0.0016) | −0.0206 (0.0216) | −0.3779 *** (0.1058) |
1 | Refer to Adler et al. (2024), which presents the complete set of fiscal consolidation cases in the dataset, along with a detailed breakdown of spending and tax measures. |
2 | For more details on the construction of fiscal consolidation datasets for 1981–2014, see notes by Alesina et al. (2018): https://igier.unibocCOni.eu/research/datasets/fiscal-adjustment-plans/dataset (accessed on 1 March 2025). Their notes highlight the similarity between Alesina et al. (2018) and Devries et al. (2011), which justifies the use of the original Devries et al. (2011) dataset by Adler et al. (2024) for the 1981–2009 period. |
References
- Abbass, K., Song, H., Khan, F., Begum, H., & Asif, M. (2022). Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environmental Science and Pollution Research, 29, 23001–23014. [Google Scholar] [CrossRef]
- Adler, G., Allen, M. C., Ganelli, M. G., & Leigh, M. D. (2024). An updated action-based dataset of fiscal consolidation (No. 2024/210). International Monetary Fund. [Google Scholar]
- Afonso, A., Nickel, C., & Rother, P. C. (2006). Fiscal consolidations in the Central and Eastern European countries. Review of World Economics, 142(2), 402–421. [Google Scholar] [CrossRef]
- Ahmed, M. M., & Shimada, K. (2019). The effect of renewable energy consumption on sustainable economic development: Evidence from emerging and developing economies. Energies, 12, 2954. [Google Scholar] [CrossRef]
- Alesina, A., & Ardagna, S. (1998). Tales of fiscal adjustment. Economic Policy, 13(27), 488–545. [Google Scholar] [CrossRef]
- Alesina, A., & Ardagna, S. (2010). Large changes in fiscal policy: Taxes versus spending. Tax Policy and the Economy, 24(1), 35–68. [Google Scholar] [CrossRef]
- Alesina, A., & Ardagna, S. (2012). The design of fiscal adjustments. Working Paper, n°18423. NBER. [Google Scholar]
- Alesina, A., Ardagna, S., Perotti, R., & Schiantarelli, F. (2002). Fiscal policy, profits, and investment. American Economic Review, 92(3), 571–589. [Google Scholar] [CrossRef]
- Alesina, A., Azzalini, G., Favero, C., Giavazzi, F., & Miano, A. (2018). Is it the ‘how or the when’ that matters in fiscal adjustment? IMF Economic Review, 66, 144–188. [Google Scholar] [CrossRef]
- Alesina, A., Favero, C., & Giavazzi, F. (2015). The output effect of fiscal consolidation plans. Journal of International Economics, 96, 19–42. [Google Scholar] [CrossRef]
- Alesina, A., Favero, C., & Giavazzi, F. (2019). What do we know about the effects of austerity? AEA Papers & Proceedings, 108, 524–530. [Google Scholar]
- Alesina, A., & Perotti, R. (1995). Fiscal expansions and adjustments in OECD countries. Economic Policy, 10(21), 205–248. [Google Scholar] [CrossRef]
- Alesina, A., & Perotti, R. (1997). Fiscal adjustments in OECD countries: Composition and macroeconomic effects. International Monetary Fund Staff Papers, 44(2), 210–248. [Google Scholar] [CrossRef]
- Barnes, D. F., Krutilla, K., & Hyde, W. F. (2010). The urban household energy transition: Social and environmental impacts in the developing world. Routledge. [Google Scholar]
- Blanchard, O. J. (1990). Comments on giavazzi and pagano (90). NBER Macroeconomics Annual, 5, 111–116. [Google Scholar] [CrossRef]
- Burke, P. (2019). Fiscal policies for development and climate action. Applied Artificial Intelligence, 55(2), 263–264. [Google Scholar] [CrossRef]
- Chen, B., Jin, F., Li, G., & Zhao, Y. (2023). Can the new energy demonstration city policy promote green and low-carbon development? Evidence from China. Sustainability, 15(11), 8727. [Google Scholar] [CrossRef]
- Chishti, M. Z., Ahmad, M., Rehman, A., & Khan, M. K. (2021). Mitigations pathways towards sustainable development: Assessing the influence of fiscal and monetary policies on carbon emissions in BRICS economies. Journal of Cleaner Production, 292, 126035. [Google Scholar] [CrossRef]
- Cho, J. S., Kim, T. H., & Shin, Y. (2015). Quantile cointegration in the autoregressive distributed-lag modeling framework. Journal of Econometrics, 188(1), 281–300. [Google Scholar] [CrossRef]
- Cole, M. A., Elliott, R. J., & Zhang, J. (2011). Growth, foreign direct investment, and the environment: Evidence from Chinese cities. Journal of Regional Science, 51(1), 121–138. [Google Scholar] [CrossRef]
- De Cos, P. H., & Moral-Benito, E. (2013). Fiscal Consolidations and Economic Growth. Fiscal Studies, 34, 491–515. [Google Scholar] [CrossRef]
- Defries, R., & Pandey, D. (2010). Urbanization, the energy ladder and forest transitions in India’s emerging economy. Land Use Policy, 27(2), 130–138. [Google Scholar] [CrossRef]
- Demena, B. A., & Afesorgbor, S. K. (2020). The effect of FDI on environmental emissions: Evidence from a meta-analysis. Energy Policy, 138, 111192. [Google Scholar] [CrossRef]
- Devries, P., Guajardo, J., Leigh, D., & Pescatori, A. (2011). A new action-based dataset of fiscal consolidation in OECD countries. IMF Working Paper 11/128. International Monetary Fund. [Google Scholar]
- Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157–175. [Google Scholar] [CrossRef]
- Dumitrescu, E. I., & Hurlin, C. (2012). Testing for granger non-causality in heterogeneous panels. Economic Modelling, 29, 1450–1460. [Google Scholar] [CrossRef]
- Galinato, G. I., & Islam, F. (2014). The challenge of addressing consumption pollutants with fiscal policy. Working Paper Series WP. Washington State University. [Google Scholar]
- Garrone, P., & Grilli, L. (2010). Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation. Energy Policy, 38, 5600–5613. [Google Scholar] [CrossRef]
- Giavazzi, F., Jappelli, T., & Pagano, M. (2000). Searching for non-linear effects of fiscal policy: Evidence from industrial and developing countries. European Economic Review, 44, 1259–1289. [Google Scholar] [CrossRef]
- Giavazzi, F., & Pagano, M. (1990). Can severe fiscal contractions be expansionary? Tales of two small European countries. NBER Macroeconomics Annual, 5, 75–111. [Google Scholar] [CrossRef]
- Giavazzi, F., & Pagano, M. (1996). Non-Keynesian Effects of Fiscal Policy Changes: International Evidence and the Swedish Experience. Swedish Economic Policy Review, 3, 67–103. [Google Scholar]
- Giudice, G., Turrini, A., & Veld, J. I. (2007). Non-Keynesian fiscal adjustment? A close look at expansionary fiscal consolidations in the EU. Open Economies Review, 18, 613–630. [Google Scholar] [CrossRef]
- Gnangoin, T. Y., Kassi, D. F., & Kongrong, O. (2023). Urbanization and CO2 emissions in belt and road Initiative economies: Analyzing the mitigating effect of human capital in Asian countries. Environmental Science and Pollution Research, 30(17), 50376–50391. [Google Scholar] [CrossRef] [PubMed]
- Halkos, G. E., & Paizanos, E. A. (2013). The effect of government expenditure on the environment: An empirical investigation. Ecological Economics, 91, 48–56. [Google Scholar] [CrossRef]
- Halkos, G. E., & Paizanos, E. A. (2016). The effects of fiscal policy on CO2 emissions: Evidence from the USA. Energy Policy, 88, 317–328. [Google Scholar] [CrossRef]
- Hua, W., Wang, L., Fang, X., & Luo, L. (2023). Urbanization and energy equity: An urban-rural gap perspective. Environmental Science and Pollution Research, 30(16), 46847–46868. [Google Scholar] [CrossRef]
- Huynh, C. M. (2020). Shadow economy and air pollution in developing Asia: What is the role of fiscal policy? Environmental Economics and Policy Studies, 22(3), 357–381. [Google Scholar] [CrossRef]
- IEA. (2021a). IEA total public energy technology RD&D budget, 1975–2020, IEA, Paris, 2021. Available online: https://www.iea.org/data-and-statistics/charts/iea-total-public-energytechnology-rd-and-d-budget-1975-2020 (accessed on 30 August 2025).
- IEA. (2021b). Public energy RD&D budgets by country for IEA members and the European Union, IEA, Paris, 2021. Available online: https://www.iea.org/data-and-statistics/charts/publicenergy-rd-and-d-budgets-by-country-for-iea-members-and-the-european-union2021 (accessed on 30 August 2025).
- Ike, G. N., Usman, O., & Sarkodie, S. A. (2020). Fiscal policy and CO2 emissions from heterogeneous fuel sources in Thailand: Evidence from multiple structural breaks cointegration test. Science of the Total Environment, 702, 134711. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). (2022). Climate change 2022: Impacts, adaptation, and vulnerability. Intergovernmental Panel on Climate Change (IPCC). [Google Scholar] [CrossRef]
- Islam, F., & Lopez, R. (2015). Government spending and air pollution in the U.S. International Review of Environmental and Resource Economics, 8(2), 139–189. [Google Scholar] [CrossRef]
- Kamal, M., Usman, M., Jahanger, A., & Balsalobre-Lorente, D. (2021). Revisiting the role of fiscal policy, financial development, and foreign direct investment in reducing environmental pollution during globalization mode: Evidence from linear and nonlinear panel data approaches. Energies, 14(21), 6968. [Google Scholar] [CrossRef]
- Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90(1), 1–44. [Google Scholar] [CrossRef]
- Katircioglu, S., & Katircioglu, S. (2018). Testing the role of fiscal policy in the environmental degradation: The case of Turkey. Environmental Science and Pollution Research, 25, 5616–5630. [Google Scholar] [CrossRef]
- Lambertini, L., & Tavares, J. A. (2005). Exchange rates and fiscal adjustments: Evidence from the OECD and implications for the EMU. Contributions to Macroeconomics, 5(1), 30. [Google Scholar] [CrossRef]
- Lan, B., Li, N., & Liu, T. (2025). How do economic growth and unemployment affect green development in Latin America nations? International Review of Economics & Finance, 98, 103955. [Google Scholar] [CrossRef]
- Landrigan, P. J., Fuller, R., Acosta, N. J., Adeyi, O., Arnold, R., Baldé, A. B., Bertollini, R., Bose-O’Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., … Zhong, M. (2018). The Lancet Commission on pollution and health. The Lancet, 391(10119), 462–512. [Google Scholar] [CrossRef]
- Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renewable and Sustainable Energy Reviews, 52, 1107–1122. [Google Scholar] [CrossRef]
- Lopez, R., Galinato, G. I., & Islam, A. (2011). Fiscal spending and the environment: Theory and Empirics. Journal of Environmental Economics and Management, 62, 180–198. [Google Scholar] [CrossRef]
- Lopez, R., & Palacios, A. (2014). Why has Europe become environmentally cleaner? Decomposing the roles of fiscal, trade and environmental policies. Environmental and Resource Economics, 58(1), 91–108. [Google Scholar] [CrossRef]
- Ma, B., & Ogata, S. (2024). Impact of urbanization on carbon dioxide emissions—Evidence from 136 countries and regions. Sustainability, 16(18), 7878. [Google Scholar] [CrossRef]
- Mahmood, H., Adow, A. H., Abbas, M., Iqbal, A., Murshed, M., & Furqan, M. (2022). The fiscal and monetary policies and environment in GCC countries: Analysis of territory and consumption-based CO2 emissions. Sustainability, 14, 1225. [Google Scholar] [CrossRef]
- McDermott, J., & Wescott, R. (1996). An empirical analysis of fiscal adjustments. IMF Staff Papers, 43, 725–753. [Google Scholar] [CrossRef]
- Moldan, B., Janouskova, S., & Hak, T. (2012). How to understand and measure environmental sustainability: Indicators and targets. Ecological Indicators, 17, 4–13. [Google Scholar] [CrossRef]
- Mtibaa, A., Lahiani, A., & Gabsi, F. B. (2022). Impact of fiscal consolidation on economic growth: The Tunisian case. The Journal of Risk Finance, 23(5), 558–582. [Google Scholar] [CrossRef]
- Muhafidin, D. (2020). The role of fiscal policy and monetary policy in environmental degradation in Indonesia. International Journal of Energy Economics and Policy, 10(3), 504–510. [Google Scholar] [CrossRef]
- OECD. (2015). Policy guidance for investment in clean energy infrastructure: Expanding access to clean energy for green growth and development. OECD Publishing. [Google Scholar] [CrossRef]
- OECD. (2022). GDP per capita (current USD). OECD Data. Available online: https://data.oecd.org/gdp/gross-domestic-product-gdp.htm (accessed on 1 March 2025).
- Pachauri, S., & Jiang, L. (2008). The household energy transition in India and China. Energy Policy, 36(11), 4022–4035. [Google Scholar] [CrossRef]
- Pao, H. T., & Tsai, C. M. (2011). Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy, 36(1), 685–693. [Google Scholar] [CrossRef]
- Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61(S1), 653–670. [Google Scholar] [CrossRef]
- Pedroni, P. (2004). Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory, 20(3), 597–625. [Google Scholar] [CrossRef]
- Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6–10), 1089–1117. [Google Scholar] [CrossRef]
- Ramey, V. A. (2011). Identifying government spending shocks: It’s all in the timing. The Quarterly Journal of Economics, 126(1), 1–50. [Google Scholar] [CrossRef]
- Ramey, V. A., & Shapiro, M. D. (1998). Costly capital reallocation and the effects of government spending. In Carnegie-Rochester conference series on public policy (Vol. 48, pp. 145–194). North-Holland. [Google Scholar]
- Rausch, S. (2013). Fiscal consolidation and climate policy: An overlapping generations perspective. Energy Economics, 40, S134–S148. [Google Scholar] [CrossRef]
- Romer, C. D., & Romer, D. H. (2010). The macroeconomic effects of tax changes: Estimates based on a new measure of fiscal shocks. American Economic Review, 100(3), 763–801. [Google Scholar] [CrossRef]
- Sarkodie, S. A., & Strezov, V. (2018). Assessment of contribution of Australia’s energy production to CO2 emissions and environmental degradation using statistical dynamic approach. Science of the Total Environment, 639, 888–899. [Google Scholar] [CrossRef]
- Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in honor of Peter Schmidt: Econometric methods and applications (pp. 281–314). Springer New York. [Google Scholar]
- Sohag, K., Islam, M. M., & Hammoudeh, S. (2024). From policy stringency to environmental resilience: Unraveling the dose-response dynamics of environmental parameters in OECD countries. Energy Economics, 134, 107570. Available online: https://www.sciencedirect.com/science/article/pii/S0140988324002780 (accessed on 1 March 2025). [CrossRef]
- Sun, H. (2022). What are the roles of green technology innovation and ICT employment in lowering carbon intensity in China? A city-level analysis of the spatial effects. Resources, Conservation and Recycling, 186, 106550. [Google Scholar] [CrossRef]
- Sutherland, A. (1997). Fiscal crises and aggregate demand: Can high public debt reverse the effects of fiscal policy? Journal of Public Economics, 65(2), 147–162. [Google Scholar] [CrossRef]
- Ullah, A., Ahmed, M., Raza, S. A., & Ali, S. (2021). A threshold approach to sustainable development: Non-linear relationship between renewable energy consumption, natural resource rent, and ecological footprint. Journal of Environmental Management, 295, 113073. [Google Scholar] [CrossRef] [PubMed]
- Umar, M., & Safi, A. (2023). Do green finance and innovation matter for environmental protection? A case of OECD economies. Energy Economics, 119, 106560. [Google Scholar] [CrossRef]
- Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748. [Google Scholar] [CrossRef]
- Westerlund, J., & Edgerton, D. L. (2007). New improved tests for cointegration with structural breaks. Journal of Time Series Analysis, 28(2), 188–224. [Google Scholar] [CrossRef]
- Wolde-Rufael, Y., & Mulat-Weldemeskel, E. (2021). Do environmental taxes and environmental stringency policies reduce CO2 emissions? Evidence from 7 emerging economies. Environmental Science and Pollution Research, 28(18), 22392–22408. [Google Scholar] [CrossRef]
- Xin, D., Ahmad, M., & Khattak, S. I. (2022). Impact of innovation in climate change mitigation technologies related to chemical industry on carbon dioxide emissions in the United States. Journal of Cleaner Production, 379, 134746. [Google Scholar] [CrossRef]
- Yuelan, P., Akbar, M. W., Hafeez, M., Ahmad, M., Zia, Z., & Ullah, S. (2019). The nexus of fiscal policy instruments and environmental degradation in China. Environmental Science and Pollution Research, 26, 28919–28932. [Google Scholar] [CrossRef]
- Zhu, H., Duan, L., Guo, Y., & Yu, K. (2016). The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression. Economic Modelling, 58, 237–248. [Google Scholar] [CrossRef]
- Ziaei, S. M. (2025). Public spending on energy innovations and CO2 impacts: Evidence from selected OECD countries. Green Technologies and Sustainability, 3(1), 100137. [Google Scholar] [CrossRef]
Obs | Mean | Min. | Max. | Std. Dev. | Skewness | Kurtosis | Jarque–Bera (J-B) | p-Value | |
---|---|---|---|---|---|---|---|---|---|
CO2 | 765 | 10.0699 | 2.4873 | 22.3303 | 4.1664 | 0.8141 | 3.0035 | 84.4987 | 0.000 |
FC | 765 | 0.3369 | 0.04 | 5.23 | 0.7573 | 3.0963 | 14.276 | 5275.194 | 0.000 |
URB | 765 | 76.5920 | 41.979 | 98.153 | 11.1542 | −0.5501 | 3.1974 | 39.8337 | 0.000 |
FDI | 765 | 3.3544 | −31.3058 | 86.4791 | 7.9071 | 4.6835 | 38.4389 | 42,829.14 | 0.000 |
GDP | 765 | 286.5861 | 9.01599 | 4473.208 | 888.9702 | 3.877348 | 16.5836 | 7798.2589 | 0.000 |
Variables | CD | CIPS I(0) | CIPS I(1) | Decision |
---|---|---|---|---|
CO2 | 35.14 *** | −1.978 | −5.940 *** | I(1) |
FC | 14.30 *** | −3.816 *** | −6.128 *** | I(0) |
FDI | 36.63 *** | −3.310 *** | −4.512 *** | I(0) |
URB | 49.21 *** | −2.595 | −3.203 *** | I(1) |
GDP | 72.82 *** | −2.414 | −4.423 *** | I(1) |
Statistic-Value | p-Value | |
---|---|---|
Phillips–Perron t (Pedroni test) | −2.5169 *** | 0.0059 |
Augmented Dickey–Fuller t (Pedroni test) | −3.3110 *** | 0.0005 |
Dickey–Fuller t (Kao test) | −1.6816 ** | 0.0463 |
Unadjusted modified Dickey–Fuller t (Kao test) | −2.0831 ** | 0.0186 |
Unadjusted Dickey–Fuller t (Kao test) | −2.5629 *** | 0.0052 |
Westerlund test | 2.7898 *** | 0.0026 |
Panel A | |||||
---|---|---|---|---|---|
Quantile | FC | FDI | URB | GDP | |
10th | 0.0016 (0.0707) | 0.0245 ** (0.0119) | −0.0479 *** (0.0108) | −2.0964 *** (0.4720) | −0.0046 *** (0.0011) |
20th | −0.0021 (0.0058) | 0.0219 ** (0.0091) | −0.0448 *** (0.0082) | −1.9975 *** (0.3592) | −0.0044 *** (0.0008) |
30th | −0.0039 0.0045 | 0.0199 *** (0.0070) | −0.0423 *** (0.0064) | −1.9184 *** (0.2791) | −0.0042 *** (0.0007) |
40th | −0.0059 * (0.0034) | 0.0175 *** (0.0054) | −0.0394 *** (0.0048) | −1.8276 *** (0.2128) | −0.0039 *** (0.0005) |
50th | −0.0068 ** (0.0032) | 0.0166 *** (0.0051) | −0.0383 *** (0.0046) | −1.7918 *** (0.2002) | −0.0038 *** (0.0005) |
60th | −0.0079 ** (0.0032) | 0.0153 *** (0.0050) | −0.0368 *** (0.0046) | −1.7424 *** (0.1999) | −0.0038 *** (0.0005) |
70th | −0.0089 *** (0.0035) | 0.0141 *** (0.0055) | −0.0353 *** (0.0049) | −1.6975 *** (0.2173) | −0.0036 *** (0.0005) |
80th | −0.0101 ** (0.0040) | 0.0128 ** (0.0063) | −0.0337 *** (0.0057) | −1.6486 *** (0.2507) | −0.0035 *** (0.0006) |
90th | −0.0117 ** (0.0051) | 0.0108 (0.0080) | −0.0314 *** (0.0073) | −1.5756 *** (0.3181) | −0.0034 *** (0.0007) |
Panel B | |||||
10th | 0.0182 ** (0.0075) | 0.0312 ** (0.0129) | −0.0008 (0.0023) | −0.2347 ** (0.0977) | |
20th | 0.0123 ** (0.0058) | 0.0266 *** (0.0099) | −0.0009 (0.0018) | −0.2196 *** (0.0749) | |
30th | 0.0068 (0.0044) | 0.0223 *** (0.0074) | −0.0010 (0.0013) | −0.2054 *** (0.0558) | |
40th | 0.0017 (0.0034) | 0.0184 *** (0.0057) | −0.0011 (0.0010) | −0.1925 *** (0.0431) | |
50th | −0.0013 (0.0031) | 0.0160 *** (0.0052) | −0.0011 (0.0009) | −0.1846 *** (0.0394) | |
60th | −0.0057 * (0.0032) | 0.0125 ** (0.0055) | −0.0012 (0.0010) | −0.1732 *** (0.0419) | |
70th | −0.0076 ** (0.0035) | 0.0111 * (0.0060) | −0.0012 (0.0011) | −0.1685 *** (0.0455) | |
80th | −0.0095 ** (0.0038) | 0.0096 (0.0066) | −0.0012 (0.0012) | −0.1637 *** (0.0502) | |
90th | −0.0133 *** (0.0047) | 0.0066 (0.0082) | −0.0013 (0.0015) | −0.1537 ** (0.0621) |
Test | Statistics [p-Values] |
---|---|
Heteroskedasticity test: Modified Wald test | 16.81 [0.4675] |
Autocorrelation test: Wooldridge test | 0.054 [0.8185] |
Variables | Wald Statistics [p-Value] |
---|---|
11.93 *** [0.0006] | |
4.23 ** [0.0398] | |
3.83 ** [0.0504] | |
1.29 [0.2552] | |
14.63 *** [0.0010] | |
5.31 ** [0.0212] | |
7.41 *** [0.0065] | |
14.25 *** [0.0002] | |
23.85 *** [0.000] |
Null Hypothesis | -Stat. | -Stat. | Prob. | Decisions |
---|---|---|---|---|
FC does not cause CO2 | 1.9624 | 2.8060 | 0.0050 | Bidirectional |
CO2 does not cause FC | 0.4280 | −1.6676 | 0.0954 | |
FDI does not cause CO2 | 17.5483 | 6.9592 | 0.0000 | Bidirectional |
CO2 does not cause FDI | 2.6163 | 4.7122 | 0.0000 | |
GDP does not cause CO2 | 3.7643 | 8.0593 | 0.0000 | Unidirectional |
CO2 does not cause GDP | 0.8716 | −0.3742 | 0.7083 | |
URB does not cause CO2 | 4.9157 | 11.4163 | 0.0000 | Bidirectional |
CO2 does not cause URB | 12.1163 | 32.4093 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mtibaa, A.; Gabsi, F.B. Assessing the Environmental Impact of Fiscal Consolidation in OECD Countries: Evidence from the Panel QARDL Approach. J. Risk Financial Manag. 2025, 18, 529. https://doi.org/10.3390/jrfm18090529
Mtibaa A, Gabsi FB. Assessing the Environmental Impact of Fiscal Consolidation in OECD Countries: Evidence from the Panel QARDL Approach. Journal of Risk and Financial Management. 2025; 18(9):529. https://doi.org/10.3390/jrfm18090529
Chicago/Turabian StyleMtibaa, Ameni, and Foued Badr Gabsi. 2025. "Assessing the Environmental Impact of Fiscal Consolidation in OECD Countries: Evidence from the Panel QARDL Approach" Journal of Risk and Financial Management 18, no. 9: 529. https://doi.org/10.3390/jrfm18090529
APA StyleMtibaa, A., & Gabsi, F. B. (2025). Assessing the Environmental Impact of Fiscal Consolidation in OECD Countries: Evidence from the Panel QARDL Approach. Journal of Risk and Financial Management, 18(9), 529. https://doi.org/10.3390/jrfm18090529